N-phosphonacetyl-L-aspartate enhances type I interferon anti-viral responses through activation of non-canonical NOD2 signaling

Author:

Ponti András K.ORCID,Zangara Megan T.ORCID,O’Connor Christine M.ORCID,Johnson Erin E.ORCID,McDonald ChristineORCID

Abstract

AbstractType I interferon production and the expression of interferon-stimulated genes (ISGs) are key components of an innate immune response to many microbial pathogens. Dysregulation of this response can result in uncontrolled infection, inflammation, and autoimmune disease. Understanding the molecular mechanisms shaping the strength of type I interferon signaling may provide critical insights into infection control strategies and autoimmune disease therapies. Nucleotide-binding oligomerization domain 2 (NOD2) is an intracellular pattern recognition receptor that acts as both a bacterial sensor protein and a mediator of antiviral responses. Antibacterial functions of NOD2 are enhanced by treatment with the small molecule inhibitor of pyrimidine biosynthesis N-phosphonacetyl-L-aspartate (PALA), though how this might function in the host antiviral response remains unknown. Therefore, we tested the ability of PALA to enhance NOD2-dependent antiviral responses. Alone, PALA treatment of macrophages was not sufficient to induce interferon β (IFNβ) production or ISG expression. Instead, PALA synergized with IFNβ stimulation to enhance expression and activation of interferon-stimulated gene factor 3 (ISGF3) and induce the upregulation of a subset of ISGs in co-treated cells. Furthermore, PALA treatment of epithelial cells resulted in impaired viral replication of the herpesvirus, human cytomegalovirus. Induction of the PALA-enhanced antiviral response required activation of non-canonical NOD2 signaling mediated by mitochondrial antiviral-signaling protein (MAVS) and interferon response factor 1 (IRF1), rather than the classical receptor-interacting serine/threonine protein kinase 2 (RIP2) pathway or other IRFs previously reported to mediate NOD2 antiviral responses. These findings highlight pyrimidine metabolism enzymes as controllers of antimicrobial responses and suggest novel mechanisms for the modulation of type I interferon responses and antiviral activity.Significance StatementUnderstanding the molecular mechanisms shaping the strength of type I interferon signaling may provide critical insights to improve infection control strategies and autoimmune disease therapies. This work demonstrates that the pyrimidine synthesis inhibitor N-phosphonacetyl-L-aspartate synergizes with type I interferon to enhance antiviral responses through activation of a non-canonical NOD2 signaling pathway. These findings highlight pyrimidine metabolism enzymes as controllers of antimicrobial responses and suggest novel mechanisms for the modulation of type I interferon responses.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3