Multilevel regulation of the glass locus during Drosophila eye development

Author:

Fritsch Cornelia,Bernardo-Garcia F. Javier,Humberg Tim-Henning,Miellet Sara,Almeida Silvia,Huber Armin,Sprecher Simon G.

Abstract

ABSTRACTDevelopment of eye tissue is initiated by a conserved set of transcripton factors termed retinal determination network (RDN). In the fruit fly Drosophila melanogaster, the zinc-finger transcription factor Glass acts directly downstream of the RDN to control idendity of photoreceptor as well as non-photoreceptors cells. Tight control of spatial and temporal gene expression is a critical feature during development, cell-fate determination as well as maintainance of differentiated tissues. The molecular mechanisms that control expression of glass, however remain largely unknown. We here identify complex regulatory mechanisms controlling expression of the glass locus. All information to recapitulate glass expression are contained in a compact 5.2 kb cis-acting genomic element by combining different cell-type specific and general enhancers with repressor elements. Moreover, the immature RNA of the locus contains an alterantive small open reading frame (smORF) upstream of the actual glass translation start, resulting in a small peptide instead of the three possible glass protein isoforms. CRISPR/Cas9-based mutagenesis shows that the smORF is not required for the formation of functioning photoreceptors, but to attenuate effects of glass misexpression. Furthermore, editing the genome to generate glass loci eliminating either one or two isoforms shows that only one of the three proteins is critical for formation of functioning photoreceptors, while removing the two other isoforms did not cause defects in developmental or photoreceptor function. Our results show that eye development and function is surprisingly robust and appears buffered to targeted manipulations of critical features of the glass transcript, suggesting a strong selection pressure to allow the formation of a functioning eye.

Publisher

Cold Spring Harbor Laboratory

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3