Large-scale pathway-specific polygenic risk, transcriptomic community networks and functional inferences in Parkinson disease

Author:

Bandres-Ciga S,Saez-Atienzar S,Kim JJ,Makarious MB,Faghri FORCID,Diez-Fairen M,Iwaki H,Leonard H,Botia J,Ryten M,Hernandez D,Gibbs JR,Ding J,Gan-Or Z,Noyce A,Pihlstrom L,Torkamani A,Scholz SW,Traynor B,Ehrlich D,Scherzer CR,Bookman M,Cookson MORCID,Blauwendraat C,Nalls MA,Singleton AB,

Abstract

ABSTRACTPolygenic inheritance plays a central role in Parkinson disease (PD). A priority in elucidating PD etiology lies in defining the biological basis of genetic risk. Unraveling how risk leads to disruption will yield disease-modifying therapeutic targets that may be effective. Here, we utilized a high-throughput and hypothesis-free approach to determine biological pathways underlying PD using the largest currently available cohorts of genetic data and gene expression data from International Parkinson’s Disease Genetics Consortium (IPDGC) and the Accelerating Medicines Partnership - Parkinson’s disease initiative (AMP-PD), among other sources. We placed these insights into a cellular context. We applied large-scale pathway-specific polygenic risk score (PRS) analyses to assess the role of common variation on PD risk in a cohort of 457,110 individuals by focusing on a compilation of 2,199 publicly annotated gene sets representative of curated pathways, of which we nominate 46 pathways associated with PD risk. We assessed the impact of rare variation on PD risk in an independent cohort of whole-genome sequencing data, including 4,331 individuals. We explored enrichment linked to expression cell specificity patterns using single-cell gene expression data and demonstrated a significant risk pattern for adult dopaminergic neurons, serotonergic neurons, and radial glia. Subsequently, we created a novel way of building de novo pathways by constructing a network expression community map using transcriptomic data derived from the blood of 1,612 PD patients, which revealed 54 connecting networks associated with PD. Our analyses highlight several promising pathways and genes for functional prioritization and provide a cellular context in which such work should be done.

Publisher

Cold Spring Harbor Laboratory

Reference36 articles.

1. Auwera GAV der , Van der Auwera GA , Carneiro MO , Hartl C , Poplin R , del Angel G , Levy-Moonshine A , Jordan T , Shakir K , Roazen D , Thibault J , Banks E , Garimella KV , Altshuler D , Gabriel S , DePristo MA (2013) From FastQ Data to High-Confidence Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline. Current Protocols in Bioinformatics 11.10.1–11.10.33

2. Aynaud T , Blondel VD , Guillaume J-L , Lambiotte R (2013) Multilevel Local Optimization of Modularity. Graph Partitioning 315–345

3. Genetics of Parkinson’s disease: An introspection of its journey towards precision medicine;Neurobiology of Disease,2020

4. The genetic architecture of Parkinson’s disease;Lancet Neurol,2020

5. Genetic identification of cell types underlying brain complex traits yields insights into the etiology of Parkinson’s disease

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3