Parallel global profiling of plant TOR dynamics reveals a conserved role for LARP1 in protein translation

Author:

Scarpin M. ReginaORCID,Leiboff SamuelORCID,Brunkard Jacob O.ORCID

Abstract

ABSTRACTTARGET OF RAPAMYCIN (TOR) is a deeply conserved protein kinase that coordinates eukaryotic metabolism with nutrient availability. In mammals, TOR specifically promotes translation of ribosomal protein mRNAs when amino acids are available to support protein synthesis. The mechanisms controlling translation downstream from TOR remain contested, however, and are largely unexplored in plants. Here, we took parallel global profiling approaches to define the in planta TOR-regulated transcriptome, translatome, proteome, and phosphoproteome. We found that TOR regulates ribosome biogenesis in plants at multiple levels, but through mechanisms that do not directly depend on the canonical 5′ oligopyrimidine tract motif (5′TOP) found in mammalian ribosomal protein mRNAs. To investigate this further, we focused on a putative TOR substrate identified in our phosphoproteome: LARP1, a eukaryotic RNA-binding protein that is proposed to mediate TOR translational control of 5′TOP mRNAs in humans and that has gained increased interest because it associates with SARS-CoV-2. By conducting parallel global profiling experiments with larp1 mutants, we discovered that the TOR-LARP1 signaling axis controls 5′TOP mRNA translation in plants and defined a set of conserved eukaryotic 5′TOP mRNAs that encode cyclins, importins/karyopherins, translation elongation factors, and TCTP1, among others. We then identified novel, plant-specific 5′TOP mRNAs involved in critical biological processes, including ribosome biogenesis, chromatin remodeling, and auxin signaling. Our study illuminates the ancestral roles of the TOR-LARP1-5′TOP metabolic regulatory network and provides evolutionary context for ongoing debates about the molecular function of LARP1 in eukaryotic cells.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3