Global proteomic profiling of primary macrophages during M. tuberculosis infection identifies TAX1BP1 as a mediator of autophagy targeting

Author:

Budzik Jonathan M.,Garelis Nick E.,Repasy Teresa,Roberts Allison W.,Popov Lauren M.,Parry Trevor J.,Jiminez-Morales David,Swaney Danielle L.,Johnson Jeffrey R.,Krogan Nevan J.,Cox Jeffery S.

Abstract

AbstractMacrophages are highly plastic cells that adopt diverse functional capabilities and play critical roles in immunity, cancer, and tissue homeostasis, but how these different cell fates and activities are triggered in response to their environmental cues is not well understood. We used new proteomic tools to identify protein post-translational modifications (PTMs) that control antibacterial responses of macrophages. Here, we report an unbiased and global analysis of the changes in host protein abundance, phosphorylation, and ubiquitylation, during the first 24-hours of Mycobacterium tuberculosis (Mtb) infection of primary macrophages. We discovered 1379 proteins with changes in their phosphorylation state and 591 proteins with changes in their ubiquitylation in response to Mtb infection. We identified pathways regulated by phosphorylation and ubiquitylation that weren’t reflected by changes in protein abundance, indicating that the activity of these pathways was regulated. These include pathways known to be regulated by ubiquitylation and phosphorylation (e.g. autophagy) as well as pathways that were not known to be regulated during Mtb infection (e.g. nucleocytoplasmic transport and mRNA metabolism). We identified an enrichment in phosphorylation of autophagy receptors (TAX1BP1, p62, optineurin, BNIP3L), several of which were not previously implicated in the host response to Mtb infection. We found that p62 deficiency blocks ubiquitylation and TAX1BP1 deficiency enhances ubiquitylation, suggesting p62 ubiquitylation acts as an amplification loop by promoting downstream adaptor recruitment and serves as a platform for recruitment of ubiquitin. Our results show that TAX1BP1 mediates clearance of ubiquitylated Mtb and targets the bacteria to LC3-positive phagophores. Taken together, our proteomic profiling is likely a valuable resource for initiating mechanistic studies of macrophage biology.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3