Phosphoglycerol-type wall- and lipoteichoic acids are enantiomeric polymers differentially cleaved by the stereospecific glycerophosphodiesterase GlpQ

Author:

Walter AxelORCID,Unsleber Sandra,Rismondo Jeanine,Jorge Ana MariaORCID,Peschel Andreas,Gründling AngelikaORCID,Mayer ChristophORCID

Abstract

ABSTRACTThe cell envelope of Gram-positive bacteria generally comprises two types of polyanionic polymers, either linked to peptidoglycan, wall teichoic acids (WTA), or to membrane glycolipids, lipoteichoic acids (LTA). In some bacteria, includingBacillus subtilisstrain 168, WTA and LTA both are glycerolphosphate polymers, yet are synthesized by different pathways and have distinct, although not entirely understood morphogenetic functions during cell elongation and division. We show here that the exo-lyticsn-glycerol-3-phosphodiesterase GlpQ can discriminate betweenB. subtilisWTA and LTA polymers. GlpQ completely degrades WTA, lacking modifications at the glycerol residues, by sequentially removing glycerolphosphates from the free end of the polymer up to the peptidoglycan linker. In contrast, GlpQ is unable to cleave unmodified LTA. LTA can only be hydrolyzed by GlpQ when the polymer is partially pre-cleaved, thereby allowing GlpQ to get access to the end of the polymer that is usually protected by a connection to the lipid anchor. This indicates that WTA and LTA are enantiomeric polymers: WTA is made ofsn-glycerol-3-phosphate and LTA is made ofsn-glycerol-1-phosphate. Differences in stereochemistry between WTA and LTA were assumed based on differences in biosynthesis precursors and chemical degradation products, but so far had not been demonstrated directly by differential, enantioselective cleavage of isolated polymers. The discriminative stereochemistry impacts the dissimilar physiological and immunogenic properties of WTA and LTA and enables independent degradation of the polymers, while appearing in the same location; e.g. under phosphate limitation,B. subtilis168 specifically hydrolyzes WTA and synthesizes phosphate-free teichuronic acids in exchange.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3