SongExplorer: A deep learning workflow for discovery and segmentation of animal acoustic communication signals

Author:

Arthur Benjamin J.,Ding Yun,Sosale Medhini,Khalif Faduma,Kim Elizabeth,Waddell Peter,Turaga Srinivas C.ORCID,Stern David L.ORCID

Abstract

AbstractMany animals produce distinct sounds or substrate-borne vibrations, but these signals have proved challenging to segment with automated algorithms. We have developed SongExplorer, a web-browser based interface wrapped around a deep-learning algorithm that supports an interactive workflow for (1) discovery of animal sounds, (2) manual annotation, (3) supervised training of a deep convolutional neural network, and (4) automated segmentation of recordings. Raw data can be explored by simultaneously examining song events, both individually and in the context of the entire recording, watching synced video, and listening to song. We provide a simple way to visualize many song events from large datasets within an interactive low-dimensional visualization, which facilitates detection and correction of incorrectly labelled song events. The machine learning model we implemented displays higher accuracy than existing heuristic algorithms and similar accuracy as two expert human annotators. We show that SongExplorer allows rapid detection of all song types from new species and of novel song types in previously well-studied species.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3