Analysis of coding variants in the human FTO gene from the ExAC (gnomAD) Database

Author:

Ferreira Souza Mauro LúcioORCID,de Sousa Jaime Viana,Guerreiro João FariasORCID

Abstract

AbstractSingle nucleotide polymorphisms (SNPs) in the first intron of the FTO gene (alpha-ketoglutarate-dependent dioxygenase) identified by a genome-wide association study (GWAS) in 2007 continue to be the known variants with the greatest effect on adiposity in different human populations. Currently available data reveal a total of 61 different intronic SNPs associated with adiposity. Coding variants in the FTO gene, on the other hand, have been little explored, but data from complete sequencing of the exomes of various populations are available in public databases and provide an excellent opportunity to investigate potential functional variants in FTO. This study aimed to track nonsynonymous variants in the exons of the FTO gene in different population groups using the ExAC database (gnomAD) (http://exac.broadinstitute.org/) and to analyze the potential functional impact of these variants on the FTO protein. Variants were analyzed using five publicly available pathogenicity prediction programs. Of the 158 mutations identified (152 missense and 6 stop-gain), 64 (40.5%) were classified as pathogenic, 67 (42.4%) were classified as benign, and 27 (17%) were classified as inconclusive. Thirty variants were classified as pathogenic by all five predictors used in this study, and 16 mutations were classified as pathogenic by only one predictor. The largest number of mutations was found in Europeans (non-Finnish) (85/158), all with very low frequencies, and half (32/64) of the variants classified as pathogenic by the five predictors used were also found in this population. The data obtained in this analysis show that a large number of rare coding variants classified as pathogenic or potentially pathogenic by different in silico pathogenicity prediction programs are not detected by GWAS due to the low linkage disequilibrium as well as the limitations of GWAS in capturing rare variants present in less than 1.0% of the population.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3