Towards a broad-spectrum antiviral, the myristoyltransferase inhibitor IMP-1088 suppresses viral replication – the Yellow fever NS5 is myristoylated

Author:

Immerheiser MelissaORCID,Zimniak Melissa,Hilpert Helen,Geiger Nina,König Eva-Maria,Bodem JochenORCID

Abstract

AbstractAlthough a potent Yellow fever vaccine is available since 1937, up to 200.000 severe cases are reported per year, which indicates that virus vaccines require additional support by antiviral therapies. Direct-acting antiviral drugs against severe and widespread diseases, such as DENV and Yellow fever infections with more than millions of diagnosed diseases per year, are still not available. Since antivirals’ development against neglected diseases is uneconomical, a broadspectrum antiviral compound would be of public benefit. Here, we show that IMP-1088, a recently published myristoyltransferase-1/2 inhibitor suppressing Rhino- and Polioviruses, inhibits replication of HIV-1, Yellow fever virus, Dengue virus, Vaccinia virus, CMV, and human Herpesvirus 8 in the low nanomolar range, indicating that IMP-1088 has broad-range activity against different pathogenic virus families. The inhibition relies on virally encoded myristoylation signals since Zika, Chikungunya, and Enterovirus 71 are not affected by IMP-1088. Furthermore, we show that the Yellow fever NS5 protein is myristoylated and IMP-1088 treatment of Dengue and Yellow fever infected cells leads to a re-localisation of the viral NS5 proteins.Author SummaryTreatment of viral diseases requires the development of tailored drugs specific to inhibit certain virus families. This specificity results in missing treatment options for important human pathogens such as Yellow fever and Dengue virus infection since the development is laborious and costly. Substances acting on various virus families could solve this problem. Here, we describe that IMP-1088, an inhibitor of the cellular myristoyltransferase, inhibits HIV-1, Dengue virus, Yellow fever viruses, Vaccinia virus, and Herpesviruses at low concentrations, which do not affect cell proliferation. Viruses without predicated myristoylation sites, such as Zika viruses, were not inhibited by IMP-1088. Since no experimental evidence was provided that Yellow fever virus proteins are myristoylated, we analysed the post-translational modification of Yellow fever NS5 protein. We determined the subcellular localisation to understand the mechanism of the IMP-1088 mediated suppression and could show that both the Dengue and the Yellow fever NS5 proteins are re-localised by IMP-1088 treatment.

Publisher

Cold Spring Harbor Laboratory

Reference25 articles.

1. America AAftSoLDatIDSo. HCV Guidance: Recommendations for Testing, Managing, and Treating Hepatitis C 2021 [updated 2021. Available from: www.HCVGuidance.org

2. Update on prevention, diagnosis, and treatment of chronic hepatitis B: AASLD 2018 hepatitis B guidance

3. Hepatitis delta virus: insights into a peculiar pathogen and novel treatment options

4. AIDSinfo. Guidelines for the Use of Antiretroviral Agents in Adults and Adolescents with HIV [Available from: https://clinicalinfo.hiv.gov/sites/default/files/inline-files/AdultandAdolescentGL.pdf.

5. Prevention CfDCa. Yellow Fever 2018 [Available from: https://www.cdc.gov/globalhealth/newsroom/topics/yellowfever/index.html.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3