Error-prone polyploid mitosis during normal Drosophila development

Author:

Fox Donald T.,Gall Joseph G.,Spradling Allan C.

Abstract

Endopolyploidy arises during normal development in many species when cells undergo endocycles—variant cell cycles in which DNA replicates but daughter cells do not form. Normally, polyploid cells do not divide mitotically after initiating endocycles; hence, little is known about their mitotic competence. However, polyploid cells are found in many tumors, and the enhanced chromosomal instability of polyploid cells in culture suggests that such cells contribute to tumor aneuploidy. Here, we describe a novel polyploid Drosophila cell type that undergoes normal mitotic cycles as part of a remodeling process that forms the adult rectal papillae. Similar polyploid mitotic divisions, but not depolyploidizing divisions, were observed during adult ileum development in the mosquito Culex pipiens. Extended anaphases, chromosome bridges, and lagging chromosomes were frequent during these polyploid divisions, despite normal expression of cell cycle regulators. Our results show that the switch to endocycles during development is not irreversible, but argue that the polyploid mitotic cycle is inherently error-prone, and that polyploid mitoses may help destabilize the cancer genome.

Publisher

Cold Spring Harbor Laboratory

Subject

Developmental Biology,Genetics

Reference31 articles.

1. Multiplication and reduction of somatic chromosome groups as a regular developmental process in the mosquito, Culex pipiens;Contributions embryol,1938

2. Fine-structural changes in relation to ion and water transport in the rectal papillae of the blowfly, Calliphora;J Cell Sci,1967

3. Physiology of osmoregulation in mosquitoes;Annu Rev Entomol,1987

4. Brodsky VYa . Uryvaeva IV . 1985. Genome multiplication in growth and development. Cambridge University Press, Cambridge, UK.

5. The Condensin Complex Is Essential for Amitotic Segregation of Bulk Chromosomes, but Not Nucleoli, in the Ciliate Tetrahymena thermophila

Cited by 91 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3