Integrating Phenomic Selection Using Single-Kernel Near-Infrared Spectroscopy and Genomic Selection for Corn Breeding Improvement

Author:

Graciano Rafaela P.,Peixoto Marco AntônioORCID,Leach Kristen A.ORCID,Suzuki Noriko,Gustin JeffORCID,Settles A. MarkORCID,Armstrong Paul R.,Resende Márcio F. R.ORCID

Abstract

AbstractPhenomic Selection (PS) is a cost-effective method proposed for predicting complex traits and enhancing genetic gain in breeding programs. The statistical procedures are similar to those utilized in genomic selection (GS) models, but molecular markers data are replaced with phenomic data, such as near-infrared spectroscopy (NIRS). However, the use of NIRS applied to PS typically utilized destructive sampling or collected data after the establishment of selection experiments in the field. Here, we explored the application of PS using non-destructive, single-kernel NIRS in a sweet corn breeding program, focusing on predicting future, unobserved field-based traits of economic importance, including ear and vegetative traits. Three models were employed on a diversity panel: G-BLUP and P-BLUP models, which used relationship matrices based on SNP and NIRS data, and a combined model. The genomic relationship matrices were evaluated with varying numbers of SNPs. Additionally, the P-BLUP model trained on the diversity panel was used to select doubled haploid (DH) lines for germination before planting, with predictions validated using observed data. The findings indicate that PS generated good predictive ability (e.g., 0.46 for plant height) and effectively distinguished between high and low germination rates in untested DH lines. Although GS generally outperformed PS, the model combining both information yielded the highest predictive ability, with considerably higher accuracies than GS when low marker densities were used. This study highlights the potential of NIRS both to achieve genetic gain where GS may not be feasible and to maintain/improve accuracy with SNP-based information while reducing genotyping costs.Key messagePhenomic selection using whole seeds is a promising alternative to improve genetic gain and complement genomic selection in corn breeding. Models that combine genomic and phenomic data maximize the predictive ability.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3