When is a control not a control? Reactive microglia occur throughout the control contralateral visual pathway in experimental glaucoma

Author:

Tribble James RORCID,Kokkali Eirini,Otmani Amin,Plastino Flavia,Lardner Emma,Vohra RupaliORCID,Kolko MiriamORCID,André Helder,Morgan James EORCID,Williams Pete AORCID

Abstract

AbstractPurposeAnimal models show retinal ganglion cell injuries that replicate features of glaucoma and the contralateral eye is commonly used as an internal control. There is significant cross-over of retinal ganglion cell axons from the ipsilateral to the contralateral side at the level of the optic chiasm which may confound findings when damage is restricted to one eye. The effect of unilateral glaucoma on neuroinflammatory damage to the contralateral visual pathway has largely been unexplored.MethodsOcular hypertensive glaucoma was induced unilaterally or bilaterally in the rat and retinal ganglion cell neurodegenerative events were assessed. Neuroinflammation was quantified in the retina, optic nerve head, optic nerve, lateral geniculate nucleus, and superior colliculus by high resolution imaging, and in the retina by flow cytometry and protein arrays.ResultsFollowing ocular hypertensive stress, peripheral monocytes enter the retina, and microglia become reactive. This effect is more marked in animals with bilateral ocular hypertensive glaucoma. In rats where glaucoma was induced unilaterally there was significant microglia activation in the contralateral (control) eye. Microglial activation extended into the optic nerve and terminal visual thalami, where it was similar across hemispheres irrespective of whether ocular hypertension was unilateral or bilateral.ConclusionsThese data suggest that caution is warranted when using the contralateral eye as control in unilateral models of glaucoma.Translational RelevanceUse of a contralateral eye as a control may confound discovery of human relevant mechanism and treatments in animal models. We also identify neuroinflammatory protein responses that warrant further investigation as potential disease modifiable targets.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3