Deletion of an evolutionarily conserved TAD boundary compromises spermatogenesis in mice

Author:

Lima Ana C.ORCID,Okhovat Mariam,Stendahl Alexandra M.,VanCampen Jake,Nevonen Kimberly A.,Herrera Jarod,Li Weiyu,Harshman Lana,Yang Ran,Fedorov Lev M.,Vigh-Conrad Katinka A.,Ahituv Nadav,Conrad Donald F.ORCID,Carbone Lucia

Abstract

AbstractSpermatogenesis is a complex process that can be disrupted by genetic and epigenetic changes, potentially leading to male infertility. Recent research has rapidly increased the number of protein coding mutations causally linked to impaired spermatogenesis in humans and mice. However, the role of non-coding mutations remains largely unexplored. As a case study to evaluate the effects of non-coding mutations on spermatogenesis, we first identified an evolutionarily conserved topologically associated domain (TAD) boundary near two genes with important roles in mammalian testis function:Dmrtb1andLrp8. We then used CRISPR-Cas9 to generate a mouse line where 26kb of the boundary was removed including a strong and evolutionarily conserved CTCF binding site. ChIP-seq and Hi-C experiments confirmed the removal of the CTCF site and a resulting increase in the DNA-DNA interactions across the domain boundary. Mutant mice displayed significant changes in testis gene expression, abnormal testis histology, a 35% drop in the estimated efficiency of spermatogenesis and a 28% decrease in daily sperm production compared to littermate controls. Despite these quantitative changes in testis function, mutant mice show no significant changes in fertility. This suggests that non-coding deletions affecting testis gene regulation may have smaller effects on fertility compared to coding mutations of the same genes. Our results demonstrate that disruption of a TAD boundary can have a negative impact on sperm production and highlight the importance of considering non-coding mutations in the analysis of patients with male infertility.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3