Effects of leg immobilization and recovery resistance training on skeletal muscle-molecular markers in previously resistance trained versus untrained adults

Author:

Michel J. Max,Godwin Joshua S.,Plotkin Daniel L.,McIntosh Mason C.,Mattingly Madison L.,Agostinelli Philip J.,Mueller Breanna J.,Anglin Derick A.,Berry Alexander C.,Vega Marina Meyer,Pipkin Autumn A.,Stock Matt S.ORCID,Graham Zachary A.ORCID,Baweja Harsimran S.,Mobley C. Brooks,Bamman Marcas M.,Roberts Michael D.

Abstract

ABSTRACTWe sought to examine how resistance training (RT) status in young healthy individuals, either well-trained (T, n=10 (8 males)) or untrained (UT, n=11 (8 males)), affected muscle size and molecular markers with leg immobilization followed by recovery RT. All participants underwent two weeks of left leg immobilization via the use of crutches and a locking leg brace. After this two-week period, all participants underwent eight weeks (3 d/week) of knee extensor focused progressive RT. Vastus lateralis (VL) ultrasound-derived thickness and muscle cross-sectional area were measured at baseline (PRE), immediately after disuse (MID), and after RT (POST) with VL muscle biopsies collected at these time points. T and UT presented lower ultrasound derived VL size (cross-sectional area and thickness) values at MID versus PRE (p≤0.001), and values increased in both groups from MID to POST (p<0.05); however, VL size increased from PRE to POST in UT only (p<0.001). Mean and type II myofiber cross-sectional area (fCSA) values demonstrated a main effect of time where PRE and POST were greater than MID (p<0.05) and main effect of training status where T was greater than UT (P≤0.012). In both groups, satellite cell number was not affected by leg immobilization but increased in response to RT (p≤0.014), with T being greater than UT across all time points (p=0.004). Additionally, ribosome content (total RNA) decreased (p=0.010) from PRE to MID while the endoplasmic reticulum stress proteins (BiP, Xbp1s, and CHOP) increased from MID to POST regardless of training status. Finally, the phosphorylation states of mechanistic target of rapamycin complex-1 signaling proteins were not significantly altered for either group throughout the intervention. In conclusion, immobilization-induced muscle atrophy and recovery RT hypertrophy outcomes are similar between UT and T participants, and the lack of molecular signature differences between groups supports these findings. However, these data are limited to younger adults undergoing non-complicated disuse. Thus, further investigation to determine the impact of training status on prolonged leg immobilization models mirroring current medical protocols (e.g., following orthopedic injury and surgery) is warranted.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3