Dynamics of X chromosome hyper-expression and inactivation in male tissues during stick insect development

Author:

Djordjevic JelisavetaORCID,Tran Van PatrickORCID,Toubiana WilliamORCID,Labédan Marjorie,Dumas ZoéORCID,Aury Jean-MarcORCID,Cruaud CorinneORCID,Istace BenjaminORCID,Labadie KarineORCID,Noel BenjaminORCID,Parker Darren JORCID,Schwander TanjaORCID

Abstract

AbstractDifferentiated sex chromosomes are frequently associated with major transcriptional changes: the evolution of dosage compensation (DC) to equalize gene expression between the sexes and the establishment of meiotic sex chromosome inactivation (MSCI). Our study investigates the mechanisms and developmental dynamics of dosage compensation and meiotic sex chromosome inactivation in the stick insect speciesT. poppense. Stick insects are characterized by XX/XO sex determination and an X chromosome which likely evolved prior to the diversification of insects over 450 Mya. We generated a chromosome-level genome assembly and analyzed gene expression from various tissues (brain, gut, antennae, leg, and reproductive tract) across developmental stages in both sexes. Our results show that complete dosage compensation is maintained in male somatic tissues throughout development, mediated by upregulation of the single X chromosome. Contrarily, in male reproductive tissues, dosage compensation is present only in the early nymphal stages. As males reach the 4th nymphal stage and adulthood, X-linked gene expression diminishes, coinciding with the onset of MSCI. This reduction is associated with histone modifications indicative of transcriptional silencing, aligning with meiotic progression. These findings reveal the dynamic regulation of X-linked gene expression inT. poppense, and suggest that reduced X-expression in insect testes is generally driven by MSCI rather than an absence of dosage compensation mechanisms. Our work provides critical insights into sex chromosome evolution and the complex interplay of dosage compensation and MSCI across tissues and developmental stages.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3