Characterizing the heterogeneity of neurodegenerative diseases through EEG normative modeling

Author:

Tabbal Judie,Ebadi Aida,Mheich Ahmad,Kabbara Aya,Güntekin Bahar,Yener Görsev,Paban Veronique,Gschwandtner Ute,Fuhr Peter,Verin Marc,Babiloni Claudio,Allouch Sahar,Hassan MahmoudORCID

Abstract

AbstractNeurodegenerative diseases such as Parkinson’s (PD) and Alzheimer’s (AD) exhibit considerable heterogeneity of functional brain features within patient populations, complicating diagnosis, treatment, prognosis, and drug discovery. Here, we use electroencephalography (EEG) and normative modeling to investigate neurophysiological oscillatory mechanisms underpinning this heterogeneity. To this aim, we use resting-state EEG activity collected by 14 clinical units, in healthy older persons (n=499) and patients with PD (n=237) and AD (n=197), aged over 40 years old. Spectral and source connectivity analyses of EEG activity provided EEG features for normative modeling and deviation measures in the PD and AD patients. Normative models confirmed significant deviations of the EEG features in PD and AD patients over population norms, characterized by high heterogeneity and frequency-dependence. The percentage of patients with at least one deviating EEG feature was ∼30% for spectral measures and ∼80% for functional source connectivity. Notably, the spatial overlap of the deviant EEG features did not exceed 60% for spectral analysis and 25% for functional source connectivity analysis. Furthermore, the patient-specific deviations were correlated with relevant clinical measures, such as the UPDRS for PD (=0.24,p=0.025) and the MMSE for AD (=-0.26,p=0.01), indicating that greater deviations from normative EEG features are associated with worsening score values. These results suggest that the deviation percentage from EEG norms may enrich clinical assessment in PD and AD patients at individual levels in the framework of Precision Neurology.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3