Omicron-specific ultra-potent SARS-CoV-2 neutralizing antibodies targeting the N1/N2 loop of Spike N-terminal domain

Author:

Niu Xiao,Li Zhiqiang,Wang Jing,Jian Fanchong,Yu Yuanling,Song Weiliang,Yisimayi Ayijiang,Du Shuo,Zhang Zhiying,Wang Qianran,Wang Jing,An Ran,Wang Yao,Wang Peng,Sun Haiyan,Yu Lingling,Yang Sijie,Xiao Tianhe,Gu Qingqing,Shao Fei,Wang Youchun,Xiao JunyuORCID,Cao YunlongORCID

Abstract

AbstractA multitude of functional mutations continue to emerge on the N-terminal domain (NTD) of the spike protein in SARS-CoV-2 Omicron subvariants. Understanding the immunogenicity of Omicron NTD and the properties of antibodies elicited by it is crucial for comprehending the impact of NTD mutations on viral fitness and guiding vaccine design. In this study, we find that most of NTD-targeting antibodies isolated from individuals with BA.5/BF.7 breakthrough infection (BTI) are ancestral (wildtype or WT)-reactive and non-neutralizing. Surprisingly, we identified five ultra-potent neutralizing antibodies (NAbs) that can only bind to Omicron but not WT NTD. Structural analysis revealed that they bind to a unique epitope on the N1/N2 loop of NTD and interact with the receptor-binding domain (RBD) via the light chain. These Omicron-specific NAbs achieve neutralization through ACE2 competition and blockage of ACE2-mediated S1 shedding. However, BA.2.86 and BA.2.87.1, which carry insertions or deletions on the N1/N2 loop, can evade these antibodies. Together, we provided a detailed map of the NTD-targeting antibody repertoire in the post-Omicron era, demonstrating their vulnerability to NTD mutations enabled by its evolutionary flexibility, despite their potent neutralization. These results highlighted the importance of considering the immunogenicity of NTD in vaccine design.Author SummaryCOVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to be a major global public health concern four years after its emergence. The N-terminal domain (NTD) is a critical component of the spike glycoprotein, which is pivotal for SARS-CoV-2 cellular entry and serves as a primary target for antibody therapeutics and vaccine development. Characterizing the properties of antibodies elicited by NTD of Omicron sublineages is crucial for understanding viral evolution and guiding vaccine design. Here, we show that Omicron infection after vaccination induces majorly non-neutralizing NTD antibodies. Still, we identified a class of ultra-potent neutralizing antibodies (NAbs) which specifically bind to the NTD of Omicron sublineages. These NAbs neutralize the virus by competing with ACE2 and blocking ACE2-mediated S1 shedding. Structural analyses reveal that these antibodies target a unique epitope on the N1/N2 loop of NTD, and intriguingly interact with the receptor-binding domain (RBD) of spike glycoprotein. This class of NAbs with the special binding pattern, are escaped by BA.2.86 and BA.2.87.1 sublineages, shedding light on the role of recently emerged mutations in the N1/N2 loop of NTD. Our findings provide fresh insights into the immunogenicity of Omicron NTD, highlighting its capacity for antibody evasion due to its evolutionary flexibility. This underscores the importance of carefully considering the NTD component in vaccine design.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3