Structural transitions in kinesin minus-end directed microtubule motility

Author:

Shibata SatokiORCID,Wang Matthew Y.ORCID,Imasaki TsuyoshiORCID,Shigematsu HidekiORCID,Wei YuanyuanORCID,Jobichen ChackoORCID,Hagio HajimeORCID,Sivaraman J.ORCID,Endow Sharyn A.ORCID,Nitta RyoORCID

Abstract

AbstractKinesin motor proteins hydrolyze ATP to produce force for spindle assembly and vesicle transport, performing essential functions in cell division and motility, but the structural changes required for force generation are uncertain. We now report high-resolution structures showing new transitions in the kinesin mechanochemical cycle, including power stroke fluctuations upon ATP binding and a post-hydrolysis state with bound ADP + free phosphate. We find that rate-limiting ADP release occurs upon microtubule binding, accompanied by central β-sheet twisting, which triggers the power stroke – stalk rotation and neck mimic docking – upon ATP binding. Microtubule release occurs with β-strand-to-loop transitions, implying that β-strand refolding induces Pi release and the recovery stroke. The strained β-sheet during the power stroke and strand-to-loop transitions identify the β-sheet as the long-sought motor spring.TeaserStalk rotation, β-sheet twisting and refolding, and neck mimic docking drive the reversed working stroke of kinesin-14INTRODUCTIONKinesin family proteins couple ATP hydrolysis to microtubule binding, generating force to produce steps or displacements along microtubules. The mechanism by which kinesins and other cytoskeletal motor proteins produce force is not fully understood. A current hypothesis is that the motors contain a spring-like or elastic element that creates strain under load during nucleotide binding or release, followed by a strain-relieving conformational change that produces force and a working stroke of the motor. The spring has not yet been identified for any motor. The power stroke differs for different motors – it consists of neck linker docking for plus-end directed kinesin-1 or a swing of the helical stalk for minus-end directed kinesin-14.RATIONALEDespite considerable research, the molecular dynamics of the kinesin-14 power stroke are still obscure, impeded by the weak microtubule binding of the motor. We overcame the weak binding by introducing a point mutation into the motor that results in faster ATP hydrolysis than wild type and tighter microtubule binding, which enabled us to resolve the motor mode of action. We now present high-resolution cryo-electron microscopy (cryo-EM) and x-ray structures of key mechanochemical states across the full force-producing cycle of a kinesin dimeric motor.RESULTSThe new structures represent five different nucleotide states – two pre-power stroke states, a fluctuating power stroke, and two post-power stroke states. The structures are both microtubule-attached and unattached. They show the motor trapped in previously unreported transition states and reveal new conformational changes involved in energy transduction. The new transition states include a transient state in which the power stroke fluctuates during ATP binding and a new state of a kinesin motor bound to ADP and free Pi prior to phosphate release. The conformational changes include the folding of the kinesin-14 neck mimic into a structure resembling the docked kinesin-1 neck linker, accompanying the power stroke, and previously unreported β-strand-to-loop transitions with stored free energy that potentially induce Pi release and drive the recovery stroke. We interpret the new structures in the context of the hypothesis that the central β-sheet undergoes distortional changes during the mechanochemical cycle that store and release free energy, functioning as the elusive spring of the motors.CONCLUSIONThe new structures show that force is produced by coupled movements of the helical stalk, central β-sheet, and neck mimic, and uncover structural changes during the power stroke that are conserved among kinesins and myosin. We find that kinesin-14 binds to a microtubule by one head during the mechanical cycle, undergoes rate-limiting ADP release, and changes in conformation during ATP binding and hydrolysis to produce force. Notably, kinesin-14 utilizes the same mechanical strategy for force production as other kinesins but couples the changes to a large swing of the stalk, an innovation derived from myosin that is not observed for kinesin-1 or other kinesin motors. Force is produced by rearranging the binding surfaces of the stalk, strand β1, helices ɑ4 and ɑ6, and the neck mimic, and by twisting and shortening strands of the central β-sheet. These structural changes produce a power stroke – rotation of the helical stalk accompanied by neck mimic docking – during the transition from the nucleotide-free to ATP-bound state, and a reverse stroke after phosphate release that reprimes the motor for the next microtubule binding interaction.Kinesin-14 force productionNew transition states and structural movements in a model for motor energy transduction and force production: β-sheet twisting stores free energy in the microtubule-bound nucleotide-free (NF) state. A fluctuating power stroke is produced in the ATP state with neck mimic docking in the ADP·Pi state, resembling the kinesin-1 neck linker. This is followed by β-strand-to-loop transitions in the microtubule-bound ADP + free Pi state. Finally, β-sheet refolding drives the recovery stroke for reversion to the ADP state.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3