Comparative Evaluation Of Machine Learning Classifiers For Brain Tumor Detection

Author:

Ali UmairORCID

Abstract

AbstractThis study evaluates the effectiveness of six machine learning classifiers—Support Vector Classifier (SVC), Logistic Regression, K-Nearest Neighbors (KNN), Naive Bayes, Decision Tree, and Random Forest—in detecting brain tumors using numerical data rather than traditional imaging techniques like MRI. The results emphasize the importance of data preprocessing, particularly feature scaling, in enhancing model performance. Among the classifiers, Random Forest emerged as the top performer, achieving an accuracy of 98.27% on both original and scaled data, demonstrating its robustness and reliability. The study highlights the potential of Random Forest as a valuable tool for automated brain tumor detection in clinical settings, offering a cost-effective and accessible alternative for resource-constrained environments. The paper suggests that future research should explore advanced deep learning models, such as 3D Convolutional Neural Networks (CNNs) and Generative Adversarial Networks (GANs), to further improve diagnostic accuracy and support early intervention and personalized treatment strategies for brain tumor patients.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3