Identification of Glyoxalase A in Group BStreptococcusand its contribution to methylglyoxal tolerance and virulence

Author:

Akbari Madeline S.,Joyce Luke R.ORCID,Spencer Brady L.ORCID,McIver Kevin S.ORCID,Doran Kelly S.ORCID

Abstract

AbstractGroup BStreptococcus(GBS) is a Gram-positive pathobiont that commonly colonizes the gastrointestinal and lower female genital tracts but can cause sepsis and pneumonia in newborns and is a leading cause of neonatal meningitis. Despite the resulting disease severity, the pathogenesis of GBS is not completely understood, especially during the early phases of infection. To investigate GBS factors necessary for blood stream survival, we performed a transposon (Tn) mutant screen in our bacteremia infection model using a GBSmarinertransposon mutant library previously developed by our group. We identified significantly underrepresented mutations in 628 genes that contribute to survival in the blood, including those encoding known virulence factors such as capsule, the β-hemolysin, and inorganic metal ion transport systems. Most of the underrepresented genes have not been previously characterized or studied in GBS, includinggloAandgloB,which are homologs for genes involved in methylglyoxal (MG) detoxification. MG is a byproduct of glycolysis and a highly reactive toxic aldehyde that is elevated in immune cells during infection. Here, we observed MG sensitivity across multiple GBS isolates and confirm thatgloAcontributes to MG tolerance and invasive GBS infection. We show specifically thatgloAcontributes to GBS survival in the presence of neutrophils and depleting neutrophils in mice abrogates the decreased survival and infection of thegloAmutant. The requirement of the glyoxalase pathway during GBS infection suggests that MG detoxification is important for bacterial survival during host-pathogen interactions.ImportanceA transposon-mutant screen of group BStreptococcus(GBS) in a bacteremia mouse model of infection revealed virulence factors known to be important for GBS survival such as the capsule, β-hemolysin/cytolysin, and genes involved in metal homeostasis. Many uncharacterized factors were also identified including genes that are part of the metabolic pathway that breaks down methylglyoxal (MG). The glyoxalase pathway is the most ubiquitous metabolic pathway for MG breakdown and is only a two-step process using glyoxalase A (gloA) and B (gloB) enzymes. MG is a highly reactive byproduct of glycolysis and is made my most cells. Here, we show that in GBS, the first enzyme in the glyoxalase pathway, encoded bygloA, contributes to MG resistance and blood survival. We further demonstrate that GloA contributes to GBS survival against neutrophilsin vitroandin vivoand, therefore, is an important virulence factor required for invasive infection.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3