Efficient coding explains neural response homeostasis and stimulus-specific adaptation

Author:

Young Edward James,Ahmadian YasharORCID

Abstract

AbstractNeurons are typically sensitive to a small fraction of stimulus space. If the environment changes, making certain stimuli more prevalent, neurons sensitive to those stimuli would respond more often and therefore, if the stimulus-response mapping remains fixed, have a higher average firing rate. However, sufficiently prolonged exposure to the new environment typically causes such neurons to adapt by responding less vigorously. If adaptation consistently returns the average firing rate of neurons, or populations of similarly tuned neurons, to its value prior to environmental shift, it is termed firing rate homeostasis. In sensory cortex adaptation is typically also stimulus specific, with neurons maintaining or even increasing their responsiveness to stimuli far from over-represented ones. Here, we present a normative explanation of firing rate homeostasis grounded in the efficient coding principle. Unlike previous theories based on efficient coding, we formulate the problem in a computation-agnostic manner, enabling our framework to apply far from the sensory periphery. We show that homeostasis can provide an optimal solution to a trade-off between coding fidelity and the metabolic cost of neural firing. We provide quantitative conditions necessary for the optimality of firing rate homeostasis, and predict how adaptation should deviate from homeostasis when these conditions are violated. Based on biological estimates of relevant parameters, we show that these conditions do hold in areas of cortex where homeostatic adaptation has been observed. Finally, we apply our framework to distributed distributional codes, a specific computational theory of neural representations serving Bayesian inference. We show that the resultant coding scheme can be accomplished by divisive normalisation with adaptive weights. We further demonstrate how homeostatic coding, coupled with such Bayesian neural representations, explains stimulus-specific adaptation, as observed,e.g., in the primary visual cortex.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3