Author:
Si Meijun,Yu Rizhen,Lin Hongchun,Li Feng,Jung Sungyun,Thomas Sandhya S.,Danesh Farhard S,Wang Yanlin,Peng Hui,Hu Zhaoyong
Abstract
AbstractChronic kidney disease (CKD) is often associated with protein-energy wasting (PEW), which is characterized by a reduction in muscle mass and strength. Although mitochondrial dysfunction and oxidative stress have been implicated to play a role in the pathogenesis of muscle wasting, the underlying mechanisms remain unclear. In this study, we used transcriptomics, metabolomics analyses and mouse gene manipulating approaches to investigate the effects of mitochondrial plasticity and oxidative stress on muscle wasting in mouse CKD models. Our results showed that the expression of oxidative stress response genes was increased, and that of oxidative phosphorylation genes was decreased in the muscles of mice with CKD. This was accompanied by reduced oxygen consumption rates, decreased levels of mitochondrial electron transport chain proteins, and increased cellular oxidative damage. Excessive mitochondrial fission was also observed, and we found that the activation of ROCK1 was responsible for this process. Inducible expression of muscle-specific constitutively active ROCK1 (mROCK1ca) exacerbated mitochondrial fragmentation and muscle wasting in CKD mice. Conversely, ROCK1 depletion (ROCK1-/-) alleviated these phenomena. Mechanistically, ROCK1 activation promoted the recruitment of Drp1 to mitochondria, thereby facilitating fragmentation. Notably, the pharmacological inhibition of ROCK1 mitigated muscle wasting by suppressing mitochondrial fission and oxidative stress. Our findings demonstrate that ROCK1 participates in CKD-induced muscle wasting by promoting mitochondrial fission and oxidative stress, and pharmacological suppression of ROCK1 could be a therapeutic strategy for combating muscle wasting in CKD conditions.Translational StatementProtein-energy wasting (PEW) is a prevalent issue among patients with chronic kidney disease (CKD) and is characterized by the loss of muscle mass. Our research uncovers a critical role that ROCK1 activation plays in muscle wasting induced by CKD. We found that ROCK1 is instrumental in causing mitochondrial fission, which leads to increased oxidative stress in muscle cells. By employing a pharmacological inhibitor, hydroxyfasudil, we were able to effectively curb ROCK1 activity, which in turn mitigated muscle wasting by reducing both mitochondrial fission and oxidative stress. These findings suggest that pharmacological inhibition of ROCK1 presents a promising therapeutic strategy for combating the muscle wasting associated with CKD.
Publisher
Cold Spring Harbor Laboratory