Integrated single-nuclei and spatial transcriptomic analysis reveals propagation of early acute vein harvest and distension injury signaling pathways following arterial implantation

Author:

Michaud Marina E.ORCID,Mota Lucas,Bakhtiari MojtabaORCID,Thomas Beena E.,Tomeo John,Pilcher William,Contreras Mauricio,Ferran ChristianeORCID,Bhasin SwatiORCID,Pradhan-Nabzdyk LeenaORCID,LoGerfo Frank W.,Liang PatricORCID,Bhasin Manoj K.ORCID

Abstract

AbstractBackgroundVein graft failure (VGF) following cardiovascular bypass surgery results in significant patient morbidity and cost to the healthcare system. Vein graft injury can occur during autogenous vein harvest and preparation, as well as after implantation into the arterial system, leading to the development of intimal hyperplasia, vein graft stenosis, and, ultimately, bypass graft failure. While previous studies have identified maladaptive pathways that occur shortly after implantation, the specific signaling pathways that occur during vein graft preparation are not well defined and may result in a cumulative impact on VGF. We, therefore, aimed to elucidate the response of the vein conduit wall during harvest and following implantation, probing the key maladaptive pathways driving graft failure with the overarching goal of identifying therapeutic targets for biologic intervention to minimize these natural responses to surgical vein graft injury.MethodsEmploying a novel approach to investigating vascular pathologies, we harnessed both single-nuclei RNA-sequencing (snRNA-seq) and spatial transcriptomics (ST) analyses to profile the genomic effects of vein grafts after harvest and distension, then compared these findings to vein grafts obtained 24-hour after carotid-cartoid vein bypass implantation in a canine model (n=4).ResultsSpatial transcriptomic analysis of canine cephalic vein after initial conduit harvest and distention revealed significant enrichment of pathways (P< 0.05) involved in the activation of endothelial cells (ECs), fibroblasts (FBs), and vascular smooth muscle cells (VSMCs), namely pathways responsible for cellular proliferation and migration and platelet activation across the intimal and medial layers, cytokine signaling within the adventitial layer, and extracellular matrix (ECM) remodeling throughout the vein wall. Subsequent snRNA-seq analysis supported these findings and further unveiled distinct EC and FB subpopulations with significant upregulation (P< 0.00001) of markers related to endothelial injury response and cellular activation of ECs, FBs, and VSMCs. Similarly, in vein grafts obtained 24 hours after arterial bypass, there was an increase in myeloid cell, protomyofibroblast, injury-response EC, and mesenchymal-transitioning EC subpopulations with a concomitant decrease in homeostatic ECs and fibroblasts. Among these markers were genes previously implicated in vein graft injury, includingVCAN(versican),FBN1(fibrillin-1), andVEGFC(vascular endothelial growth factor C), in addition to novel genes of interest such asGLIS3(GLIS family zinc finger 3) andEPHA3(ephrin-A3). These genes were further noted to be driving the expression of genes implicated in vascular remodeling and graft failure, such asIL-6,TGFBR1,SMAD4, andADAMTS9.By integrating the ST and snRNA-seq datasets, we highlighted the spatial architecture of the vein graft following distension, wherein activated and mesenchymal-transitioning ECs, myeloid cells, and FBs were notably enriched in the intima and media of distended veins. Lastly, intercellular communication network analysis unveiled the critical roles of activated ECs, mesenchymal transitioning ECs, protomyofibroblasts, and VSMCs in upregulating signaling pathways associated with cellular proliferation (MDK, PDGF, VEGF), transdifferentiation (Notch), migration (ephrin, semaphorin), ECM remodeling (collagen, laminin, fibronectin), and inflammation (thrombospondin), following distension.ConclusionsVein conduit harvest and distension elicit a prompt genomic response facilitated by distinct cellular subpopulations heterogeneously distributed throughout the vein wall. This response was found to be further exacerbated following vein graft implantation, resulting in a cascade of maladaptive gene regulatory networks. Together, these results suggest that distension initiates the upregulation of pathological pathways that may ultimately contribute to bypass graft failure and presents potential early targets warranting investigation for targeted therapies. This work highlights the first applications of single-nuclei and spatial transcriptomic analyses to investigate venous pathologies, underscoring the utility of these methodologies and providing a foundation for future investigations.

Publisher

Cold Spring Harbor Laboratory

Reference99 articles.

1. Heart Disease and Stroke Statistics-2022 Update: A Report from the American Heart Association;Circulation,2022

2. Heart Disease and Stroke Statistics - 2021 Update: A Report From the American Heart Association;Circulation,2021

3. A systematic review and meta-analysis of revascularization outcomes of infrainguinal chronic limb-threatening ischemia;Journal of Vascular Surgery,2019

4. Conduits Used in Coronary Artery Bypass Grafting: A Review of Morphological Studies

5. One-Year Coronary Bypass Graft Patency

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3