Comprehensive reanalysis for CNVs in ES data from unsolved rare disease cases results in new diagnoses

Author:

Demidov German,Yaldiz Burcu,Garcia-Pelaez José,de Boer Elke,Schuermans Nika,Van de Vondel Liedewei,Paramonov Ida,Johansson Lennart F.,Musacchia Francesco,Benetti Elisa,Bullich Gemma,Sablauskas Karolis,Beltran Sergi,Gilissen Christian,Hoischen Alexander,Ossowski Stephan,de Voer Richarda,Lohmann Katja,Oliveira Carla,Topf Ana,Vissers Lisenka E.L.M.,Laurie Steven,

Abstract

AbstractWe report the diagnostic results of a comprehensive copy number variant (CNV) reanalysis of 9,171 exome sequencing (ES) datasets from 5,757 families, including 6,143 individuals affected by a rare disease (RD). The data analysed was extremely heterogeneous, having been generated using 28 different exome enrichment kits, and sequenced on multiple short-read sequencing platforms, by 42 different research groups across Europe partnering in the Solve-RD project. Each of these research groups had previously undertaken their own analysis of the ES data but had failed to identify disease-causing variants.We applied three CNV calling algorithms to maximise sensitivity: ClinCNV, Conifer, and ExomeDepth. Rare CNVs overlapping genes of interest in custom lists provided by one of four partner European Reference Networks (ERN) were identified and taken forward for interpretation by clinical experts in RD. To facilitate interpretation, Integrative Genomics Viewer (IGV) screenshots incorporating a variety of custom-made tracks were generated for all prioritised CNVs.These analyses have resulted in a molecular diagnosis being provided for 51 families in this sample, with ClinCNV performing the best of the three algorithms in identifying disease-causing CNVs. We also identified pathogenic CNVs that are partially explanatory of the proband’s phenotype in a further 34 individuals. This work illustrates the value of reanalysing EScold casesfor CNVs even where analyses had been undertaken previously. Crucially, identification of these previously undetected CNVs has resulted in the conclusion of the diagnostic odyssey for these RD families, some of which had endured decades.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3