OxPhos in adipose tissue macrophages regulated by BTK enhances their M2-like phenotype and confers a systemic immunometabolic benefit in obesity

Author:

Purvis Gareth S. D.ORCID,Collino Massimo,van Dam Andrea D.,Einaudi Giacomo,Ng Yujung,Shanmuganathan Mayooran,Patel Smita Y.,Thiemermann Christoph,Channon Keith M.,Greaves David R.ORCID,

Abstract

AbstractBruton’s tyrosine kinase (BTK) is a non-receptor bound kinase involved in pro-inflammatory signalling in activated macrophages, however, its role within adipose tissue macrophages remains unclear. We have demonstrated that BTK signalling regulates macrophage M2-like polarisation state by up-regulating subunits of mitochondrially encoded electron transport chain Complex I (ND4andNDL4) and Complex IV (mt-CO1,mt-CO2andmt-CO3) resulting in an enhanced rate of oxidative phosphorylation (OxPhos) in an NF-κB independent manner. Critically, BTK expression is elevated in adipose tissue macrophages from obese individuals with diabetes, while key mitochondrial genes (mtC01, mtC02 and mtC03) are decreased in inflammatory myeloid cells from obese individuals. Inhibition of BTK signalling either globally (Xid mice) or in myeloid cells (LysMCreBTK), or therapeutically (Acalabrutinib) protects HFD-fed mice from developing glycaemic dysregulation by improving signalling through the IRS1/Akt/GSK3b pathway. The beneficial effects of acalabrutinib treatment are lost in macrophage ablated mice. Inhibition of BTK signalling in myeloid cells but not B-cells, induced a phenotypic switch in adipose tissue macrophages from a pro-inflammatory M1-state to a pro-resolution M2-like phenotype, by shifting macrophage metabolism towards OxPhos. This reduces both local and systemic inflammation and protects mice from the immunometabolic consequences of obesity. Therefore, in BTK we have identified a macrophage specific, druggable target that can regulate adipose tissue polarisation and cellular metabolism that can confer systematic benefit in metabolic syndrome.Article high lightsObesity and diabetes are associated with inflammation, particularly within the adipose tissue. We have found a new druggable target called Bruton’s tyrosine kinase (BTK) that is highly expressed in adipose tissue macrophages. When BTK is inhibited in macrophages, it allows these cells to undergo a phenotypic switch towards an M2-like pro-resolution macrophage. This achieved by increasing expression of key mitochondrially encoded components of the electron transport chain allowing for enhanced OxPhos. Inhibition of BTK signalling in myeloid cells but not B-cells protects HFD-fed mice from developing glycaemic dysregulation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3