MuscleBmal1is necessary for normal transcriptomic and metabolomic adaptation to endurance exercise training

Author:

Viggars Mark RORCID,Berko Hannah E,Gutierrez-Monreal Miguel AORCID,Martin Ryan AORCID,Esser Karyn AORCID

Abstract

AbstractObjectiveThe skeletal muscle circadian clock plays a pivotal role in muscle homeostasis and metabolic flexibility. Recently, this clock mechanism has been linked to both transcriptional and metabolic responses to acute exercise. However, the contribution of the circadian clock mechanism to the molecular and phenotypic adaptations to exercise training have not been defined.MethodsInducible skeletal muscle-specific Bmal1-floxed mice were treated with tamoxifen to induce skeletal muscle specific deletion of Bmal1 (iMSBmal1KO) or given a vehicle. Mice were assigned to normal cage conditions, or 6-weeks of progressive treadmill training. Exercise performance, body composition, and tissue/serum indices of metabolic health were assessed over the timecourse of training. Gastrocnemius muscles were collected 48-hours after their last exercise bout for histological, biochemical, and molecular analyses including RNA-sequencing and untargeted metabolomics.ResultsImprovements in exercise workload and maximal performance were comparable between iMSBmal1KO mice and vehicle treated controls after 6-weeks of exercise training. However, exercise training in the absence ofBmal1was not able to rescue the metabolic phenotype and hyperinsulinemia of the iMSBmal1KO mice, attributed to the continued dysregulation of core clock components and gene expression relating to glucose metabolism. Importantly, a much larger and divergent transcriptional reprogramming occurred in the muscle of iMSBmal1KO mice in comparison to their vehicle treated counterparts. This response included a large compensatory upregulation of genes associated with fatty acid β-oxidation, pyruvate metabolism, citric acid cycle components and oxidative phosphorylation components, including mitochondrial subunits and mitoribosome units.ConclusionsCollectively, we propose that endurance training requires muscleBmal1, and the core clock network, to elicit well recognized molecular adaptations. In the absence ofBmal1, exercise training results in a much larger and divergent re-networking of the basal skeletal muscle transcriptome and metabolome. We also demonstrate that skeletal muscleBmal1is indispensable for the transcriptional regulation of glucose homeostasis, even after a 6-weeks exercise training programme.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3