Gapped-kmer sequence modeling robustly identifies regulatory vocabularies and distal enhancers conserved between evolutionarily distant mammals

Author:

Oh Jin WooORCID,Beer Michael A.ORCID

Abstract

AbstractGene regulatory elements drive many complex biological phenomena such as fetal development, and their mutations are linked to a multitude of common human diseases. The phenotypic impacts of regulatory variants are often tested using their conserved orthologous counterparts in model organisms such as mice. However, mapping human enhancers to conserved elements in mice remains a challenge, due to both rapid evolution of enhancers and limitations of current computational methods to detect conserved regulatory sequences. To improve upon existing computational methods and to better understand the sources of this apparent regulatory divergence, we comprehensively measured the evolutionary dynamics of distal enhancers across 45 matched human/mouse cell/tissue pairs from more than 1,000 DNase-seq experiments. Using this expansive dataset, we show that while cell-specific regulatory vocabulary is conserved, enhancers evolve more rapidly than other genomic elements such as promoters and CTCF binding sites. We observed surprisingly high levels of cell-specific variability in enhancer conservation rates, in part explainable by tissue specific transposable element activity. To improve orthologous enhancer mapping, we developed an improved genome alignment algorithm using gapped-kmer sequence features, and using the matched cell/tissue pairs, we show that this novel computational method,gkm-align, discovers 23,660 novel human/mouse conserved enhancers missed by standard alignment algorithms.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3