Protective Role of RIPK1 Scaffolding against HDV-Induced Hepatocyte cell death and the Significance of Cytokines in Mice

Author:

Camps Gracián,Maestro Sheila,Torella Laura,Usai Carla,Aldaz Ana,Olagüe Cristina,Vales Africa,Montfort Anne,Ségui Bruno,Suarez Lester,Aldabe RafaelORCID,Gonzalez-Aseguinolaza GloriaORCID

Abstract

AbstractHepatitis delta virus (HDV) infection represents the most severe form of human viral hepatitis; however, the mechanisms underlying its pathology remain incompletely understood. We recently developed an HDV mouse model by injecting adeno-associated viral vectors (AAV) containing replication-competent HBV and HDV genomes. This model replicates many features of human infection, including liver injury. Notably, the extent of liver damage can be diminished with anti-TNF-α treatment. In the present study, we found that TNF-α is mainly produced by macrophages. Downstream of the TNF-α receptor (TNFR), the receptor-interacting serine/threonine-protein kinase 1 (RIPK1) serves as a cell fate regulator, playing roles in both cell survival and death pathways. In this study, we explored the function of RIPK1 and other host factors in HDV-induced cell death. We determined that the scaffolding function of RIPK1, and not its kinase activity, offers partial protection against HDV-induced apoptosis. A reduction in RIPK1 expression in hepatocytes through Cas9-mediated gene editing significantly intensifies HDV-induced damage. Contrary to our expectations, the protective effect of RIPK1 was not linked to TNF-α or macrophage activation, as their absence did not alter the extent of damage. Intriguingly, in the absence of RIPK1, macrophages confer a protective role. However, in animals unresponsive to type-I IFNs, RIPK1 downregulation did not exacerbate the damage, suggesting RIPK1’s role in shielding hepatocytes from type-I IFN-induced cell death. Interestingly, while the damage extent is similar between IFNAR KO and WT mice in terms of transaminase elevation, their cell death mechanisms differ. In conclusion, our findings reveal that HDV-induced type-I IFN production is central to inducing hepatocyte death, and RIPK1’s scaffolding function offers protective benefits. Thus, type-I IFN together with TNF-α, contribute to HDV-induced liver damage. These insights may guide the development of novel therapeutic strategies to mitigate HDV-induced liver damage and halt disease progression.Author summaryHepatitis D is the most aggressive form of viral hepatitis. Our manuscript underscores the complexity of HDV-induced liver damage, where both viral and host factors play significant roles. Previously, we demonstrated that pharmacological inhibition of TNF-α reduced HDV-induced liver damage. This result was corroborated in the present study using TNF-α-deficient mice. Moreover, we reported that the expression of the HDV antigen might have a cytotoxic effect, and HDV replication induces a strong activation of the innate immune system, accompanied by a substantial production of IFN-β. In this study, we discovered that RIPK1, a molecule described as a cell fate modulator acting downstream of TNF-α, plays a protective role during HDV replication. Contrary to our expectations, neither TNF-α nor macrophages, the primary producers of TNF-α, contributed to this protective effect. Instead, it seems type I IFN was involved. Interestingly, the role of type I IFN in HBV-induced liver damage has recently been proposed. Furthermore, our data reveals that several mechanisms of hepatocyte death are at play simultaneously during HDV replication, with apoptosis being one of them. Additional studies are needed to identify other mechanisms involved. Finally, these findings suggest that therapies targeting TNF-α and type-I IFN, or those increasing RIPK1 levels, might be effective in preventing or treating HDV-induced liver damage.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3