Identification of visible and near-infrared signature peaks for arboviruses andPlasmodium

Author:

Goh Brendon,Soares Magalhães Ricardo J.ORCID,Ciocchetta Silvia,Liu Wenjun,Sikulu-Lord Maggy T.ORCID

Abstract

AbstractArbovirus and malaria infections affect more than half of the world’s population causing major financial and physical burden. Current diagnostic tools such as microscopy, molecular and serological techniques are technically demanding, costly, or time consuming. Near-infrared spectroscopy has recently been demonstrated as a potential diagnostic tool for malaria and arbovirus and as a screening tool for disease vectors. However, pathogen specific infrared peaks that allow detection of these infections are yet to be described. In this study, we identified unique NIRS peaks from existing laboratory strains of four major arboviruses including Barmah Forest virus (BFV), Dengue virus (DENV), Ross River virus (RRV), Sindbis virus (SINV) andPlasmodium falciparum. Secondly, to determine the diagnostic ability of these peaks, we developed machine learning algorithms using Artificial Neural network (ANN) to differentiate arboviruses from media in which they are grown. Signature peaks for BFV were identified within the visible region at 410, 430, 562 and 588nm and the NIR region at, 946, 958, 1130, 1154 and 1780 nm. DENV related peaks were seen at 410nm within the visible region and 1130 nm within the NIR region. Signature peaks for RRV were observed within the visible region at 410 and 430 nm and within the NIR region at 1130 and 1780 nm, while SINV had a prominent peak at 410 nm within the visible region. Peaks at 514, 528, 547, 561, 582, and 595nm and peaks at 1388, 1432, 1681, 1700, 1721, 1882, 1905, 2245, 2278, 2300 nm were unique forP. falciparum. NIRS predictive sensitivity defined as the ability to predict an arbovirus as an infection was 90% (n = 20) for BFV, 100% (n =10) for RRV and 97.5% (n= 40) for DENV, while infection specificity defined as the ability to predict media as not-infected was 100% (n= 10). Our findings indicate that spectral signatures obtained by NIRS are potential biomarkers for diagnosis arboviruses and malaria.Author summaryMore than half of the world is at risk of contracting either malaria or arboviral infections. In resource limited settings, timely detection of these infections and the ability to screen thousands of people in a day using affordable tools is key to preventing their spread and unprecedented outbreaks. This emphasizes the need to develop portable, rapid, and easy to use diagnostic and surveillance tools. The near-infrared spectroscopy technique has recently been shown to be a potential tool for the diagnosis and surveillance of both malaria and arboviral infections. However, signature spectral biomarkers for these infections remain to be described. This study has identified several spectral biomarkers for DEN, RRV, BVF, SIN arboviruses andP. falciparum parasites. These biomarkers will assist the future assessment of this technique as a diagnostic and or surveillance tool for these infections in the field.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3