S RNA Intergenic Deletions Drive Viral Interference during Arenavirus Infections

Author:

Hackbart MatthewORCID,López Carolina B.ORCID

Abstract

ABSTRACTArenaviruses, a family of negative-sense RNA viruses spread by rodents, are a leading cause of severe hemorrhagic fever in humans. Due to a paucity of antivirals and vaccines for arenaviruses, there is a need to identify new mechanisms for interfering with arenavirus replication. In several negative-sense RNA viruses, natural viral interference results from the production of non-standard viral genomes (nsVGs) that activate the innate immune system and/or compete for essential viral products. Although it is well established that arenaviruses produce strong interfering activities, it is unknown if they produce interfering nsVGs. Here we show that arenaviruses produce deletions within the intergenic region of their Small (S) RNA genome, which prevents the production of viral mRNA and protein. These deletions are more abundant when arenaviruses are grown in high-interfering conditions and are associated with inhibited viral replication. Overall, we found that arenaviruses produce internal deletions within the S RNA intergenic region that are produced by arenaviruses and can block viral replication. These natural arenavirus interfering molecules provide a new target for the generation of antivirals as well as an alternative strategy for producing attenuated arenaviruses for vaccines.AUTHOR SUMMARYArenaviruses are hemorrhagic fever-causing pathogens that infect millions of people a year. There are currently no approved antivirals that target arenaviruses and understanding natural mechanisms that inhibit arenavirus replication is crucial for the development of effective therapeutics. Here, we identify multiple deletions within arenavirus genomes that are associated with the inhibition of viral replication. We show that these deletions prevent viral protein production through the removal of the intergenic region of the viral genome. These deletions were found in all arenaviruses tested in this study representing a novel mechanism for development of new antivirals and vaccines that broadly target the arenavirus family.

Publisher

Cold Spring Harbor Laboratory

Reference29 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3