Brain network hypersensitivity underlies pain crises in sickle cell disease

Author:

Joo PangyuORCID,Kim Minkyung,Kish BriannaORCID,Nair Vidhya VijayakrishnanORCID,Tong YunjieORCID,Harte Steven EORCID,Harris Richard E,Lee UnCheolORCID,Wang YingORCID

Abstract

AbstractSickle cell disease (SCD) is a genetic disorder causing blood vessel blockages and painful Vaso-occlusive crises (VOCs). VOCs, characterized by severe pain due to blocked blood flow, are recurrent and unpredictable, posing challenges for preventive strategies. In this study we propose explosive synchronization (ES), a phenomenon characterized by abrupt brain network phase transitions, as a novel approach to address this challenge. We hypothesized that the accumulated disruptions in the brain network induced by SCD might lead to strengthened ES and hypersensitivity. We explored ES’s relationship with patient reported outcome measures (PROMs) and VOCs by analyzing EEG data from 25 SCD patients and 18 matched controls. SCD patients exhibited significantly lower alpha wave frequency than controls. SCD patients under painful pressure stimulation showed correlation between frequency disassortativity (FDA), an ES condition, and three important PROMs. Furthermore, patients who had a higher frequency of VOCs in the preceding 12 months presented with stronger FDA. The timing of VOC occurrence relative to EEG recordings was significantly associated to FDA. We also conducted computational modeling on SCD brain network to study FDA’s role in network sensitivity. Stronger FDA correlated with higher responsivity and complexity in our model. Simulation under noisy environment showed that higher FDA could be linked to increased occurrence frequency of crisis. This study establishes connections between SCD pain and the universal network mechanism, ES, offering a strong theoretical foundation. This understanding will aid predicting VOCs and refining pain management for SCD patients.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3