SARS-CoV-2 N protein-induced Dicer, XPO5, SRSF3, and hnRNPA3 downregulation causes pneumonia

Author:

Luo Yu-Wei,Zhou Jiang-Peng,Ji Hongyu,Zheng Anqi,Wang Xin,Dai Zhizheng,Luo Zhicheng,Cao Fang,Wang Xing-Yue,Bai Yunfang,Chen Di,Chen Yueming,Wang Qi,Yang Yaying,Zhang Xinghai,Chiu Sandra,Huang Ai-Long,Tang Kai-FuORCID

Abstract

AbstractAge is a major risk factor for coronavirus disease (COVID-19)-associated severe pneumonia and mortality; however, the underlying mechanism remains unclear. Herein, we investigated whether age-related deregulation of RNAi components and RNA splicing factors affects COVID-19 severity. Decreased expression of RNAi components (Dicer and XPO5) and splicing factors (SRSF3 and hnRNPA3) correlated with increased severity of COVID-19 and SARS-CoV-2 nucleocapsid (N) protein-induced pneumonia. N protein induced autophagic degradation of Dicer, XPO5, SRSF3, and hnRNPA3, repressing miRNA biogenesis and RNA splicing and inducing DNA damage, proteotoxic stress, and pneumonia. Dicer, XPO5, SRSF3, and hnRNPA3 were downregulated with age in mouse lung tissues. Older mice experienced more severe N protein-induced pneumonia than younger mice. However, treatment with a poly(ADP-ribose) polymerase inhibitor (PJ34) or aromatase inhibitor (anastrozole) relieved N protein-induced pneumonia by restoring Dicer, XPO5, SRSF3, and hnRNPA3 expression. These findings will aid in developing improved treatments for SARS-CoV-2-associated pneumonia.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3