Single-cell bisulfite-free 5mC and 5hmC sequencing with high sensitivity and scalability

Author:

Cao Yunlong,Bai Yali,Yuan Tianjiao,Song Liyang,Fan Yu,Ren Liuhao,Song Weiliang,Peng Jiahui,An Ran,Gu Qingqing,Zheng Yinghui,Xie Xiaoliang Sunney

Abstract

AbstractExisting single cell bisulfite-based DNA methylation analysis is limited by low DNA recovery, and the measurement of 5hmC at single-base resolution remains challenging. Here we present a bisulfite-free single-cell whole-genome 5mC and 5hmC profiling technique, named Cabernet, which can characterize 5mC and 5hmC at single-base resolution with high genomic coverage. Cabernet utilizes Tn5 transposome for DNA fragmentation, which enables the discrimination between different alleles for measuring hemi-methylation status. Using Cabernet, we revealed the 5mC, hemi-5mC and 5hmC dynamics during early mouse embryo development, uncovering genomic regions exclusively governed by active or passive demethylation. We show that hemi-methylation status can be used to distinguish between pre– and post-replication cells, enabling more efficient cell grouping when integrated with 5mC profile. The property of Tn5 naturally enables Cabernet to achieve high-throughput single-cell methylome profiling, where we probed mouse cortical neurons and embryonic day 7.5 (E7.5) embryos, and constructed the library for thousands of single cells at high efficiency, demonstrating its potential for analyzing complex tissues at substantially low cost. Together, we present a new way of high-throughput methylome and hydroxymethylome detection at single-cell resolution, enabling efficient analysis of epigenetic status of biological systems with complicated nature such as neurons and cancer cells.Significance StatementMost of current methylation profiling techniques rely on bisulfite treatment, which suffers low DNA recovery. The technique proposed in this study, named Cabernet, can be used to measure 5mC and 5hmC at single-base resolution with high genomic coverage. By using Tn5 transposome, hemi-methylation status can be measured and high-throughput methylome profiling can be achieved. Together, it provides an efficient way to analyze the epigenetic landscape of complicated biological systems.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3