Quantitative imaging of three-dimensional fiber orientation in the human brain via two illumination angles using polarization-sensitive optical coherence tomography

Author:

Liu Chao J.ORCID,Ammon WilliamORCID,Jones Robert J.ORCID,Nolan Jackson C.ORCID,Gong DayangORCID,Maffei ChiaraORCID,Edlow Brian L.ORCID,Augustinack Jean C.,Magnain CarolineORCID,Yendiki AnastasiaORCID,Villiger MartinORCID,Fischl BruceORCID,Wang HuiORCID

Abstract

AbstractThe accurate measurement of three-dimensional (3D) fiber orientation in the brain is crucial for reconstructing fiber pathways and studying their involvement in neurological diseases. Optical imaging methods such as polarization-sensitive optical coherence tomography (PS-OCT) provide important tools to directly quantify fiber orientation at micrometer resolution. However, brain imaging based on the optic axis by PS-OCT so far has been limited to two-dimensional in-plane orientation, preventing the comprehensive study of connectivity in 3D. In this work, we present a novel method to obtain the 3D fiber orientation in full angular space with only two illumination angles. We measure the optic axis orientation and the apparent birefringence by PS-OCT from a normal and a 15 deg tilted illumination, and then apply a computational method yielding the 3D optic axis orientation and true birefringence. We verify that our method accurately recovers a large range of through-plane orientations from -85 deg to 85 deg with a high angular precision. We further present 3D fiber orientation maps of entire coronal sections of human cerebrum and brainstem with 10 μm in-plane resolution, revealing unprecedented details of fiber configurations. We envision that further development of our method will open a promising avenue towards large-scale 3D fiber axis mapping in the human brain and other complex fibrous tissues at microscopic level.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3