Photoacoustic Imaging for Non-Invasive Assessment of Physiological Biomarkers of Intestinal Injury in Experimental Necrotizing Enterocolitis

Author:

Weis Jared A.ORCID,Rauh Jessica L.,Ellison Maryssa A.,Cruz-Diaz Nildris,Yamaleyeva Liliya M.,Welch Cherrie D.,Zeller Kristen A.,Weis Victoria G.

Abstract

AbstractBackgroundNecrotizing enterocolitis (NEC) is an often-lethal disease of the premature infants’ intestinal tract that is exacerbated by significant difficulties in early and accurate diagnosis. In NEC disease, the intestine often exhibits hypoperfusion and dysmotility, which contributes to advanced disease pathogenesis. However, these physiological features cannot be accurately and quantitively assessed within the current constraints of imaging modalities frequently used in the clinic (plain film X-ray and ultrasound). We have previously demonstrated the ability of photoacoustic imaging (PAI) to non-invasively and quantitively assess intestinal tissue oxygenation and motility in a healthy neonatal rat model. As a first-in-disease application, we evaluated NEC pathogenesis using PAI to assess intestinal health biomarkers in a preclinical neonatal rat experimental model of NEC.MethodsNEC was induced in neonatal rat pups from birth to 4 days old via hypertonic formula feeding, full-body hypoxic stress, and lipopolysaccharide administration to mimic bacterial colonization. Healthy breastfed (BF) controls and NEC rat pups were imaged at 2- and 4-days old. Intestinal tissue oxygen saturation was measured with PAI imaging for oxy- and deoxyhemoglobin levels. To measure intestinal motility, ultrasound and co-registered PAI cine recordings were used to capture intestinal peristalsis motion and contrast agent (indocyanine green) transit within the intestinal lumen. Additionally, both midplane two-dimensional and volumetric three-dimensional imaging acquisitions were assessed for oxygenation and motility.ResultsNEC pups showed a significant decrease of intestinal tissue oxygenation as compared to healthy BF controls at both ages (2-days old: 55.90% +/-3.77% vs 44.12% +/-7.18%; 4-days old: 56.13% +/-3.52% vs 38.86% +/-8.33%). Intestinal motility, assessed using a computational intestinal deformation analysis, demonstrated a significant reduction in the intestinal motility index in both early (2-day) and established (4-day) NEC. Extensive NEC damage was confirmed with histology and dysmotility was confirmed by small intestinal transit assay.ConclusionsThis study presents PAI as a successful emerging diagnostic imaging modality for both intestinal tissue oxygenation and intestinal motility disease hallmarks in a rat NEC model. PAI presents enormous significance and potential for fundamentally changing current clinical paradigms for detecting and monitoring intestinal pathologies in the premature infant.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3