Serum-deprivation response of ARPE-19 cells; expression patterns relevant to age-related macular degeneration

Author:

Peterson Katherine M.ORCID,Mishra Sanghamitra,Asaki Esther,Powell John I.,He Yiwen,Berger Alan E.,Rajapakse Dinusha,Wistow Graeme

Abstract

AbstractARPE-19 cells are derived from adult human retinal pigment epithelium (RPE). The response of these cells to the stress of serum deprivation mimics some important processes relevant to age-related macular degeneration (AMD). Here we extend the characterization of this response using RNASeq and EGSEA gene set analysis of ARPE-19 cells over nine days of serum deprivation. This experiment confirmed the up-regulation of cholesterol and lipid-associated pathways that increase cholesterol levels in these cells. The gene expression analysis also identified other pathways relevant to AMD progression. There were significant changes in extracellular matrix gene expression, notably a switch from expression of collagen IV, a key component of Bruch’s membrane (part of the blood-retina barrier), to expression of a fibrosis-like collagen type I matrix. Changes in the expression profile of the extracellular matrix led to the discovery that amelotin is induced in AMD and is associated with the development of the calcium deposits seen in late-stage geographic atrophy. The transcriptional profiles of other pathways, including inflammation, complement, and coagulation, were also modified, consistent with immune response patterns seen in AMD. As previously noted, the cells resist apoptosis and autophagy but instead initiate a gene expression pattern characteristic of senescence, consistent with the maintenance of barrier function even as other aspects of RPE function are compromised. Other differentially regulated genes were identified that open new avenues for investigation. Our results suggest that ARPE-19 cells maintain significant stress responses characteristic of native RPE that are informative for AMD. As such, they provide a convenient system for discovery and for testing potential therapeutic interventions.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3