Predicting new onset thought disorder in early adolescence with optimized deep learning implicates environmental-putamen interactions

Author:

de Lacy Nina,Ramshaw Michael J.

Abstract

AbstractBackgroundThought disorder (TD) is a sensitive and specific marker of risk for schizophrenia onset. Specifying factors that predict TD onset in adolescence is important to early identification of youth at risk. However, there is a paucity of studies prospectively predicting TD onset in unstratified youth populations.Study DesignWe used deep learning optimized with artificial intelligence (AI) to analyze 5,777 multimodal features obtained at 9-10 years from youth and their parents in the ABCD study, including 5,014 neural metrics, to prospectively predict new onset TD cases at 11-12 years. The design was replicated for all prevailing TD cases at 11-12 years.Study ResultsOptimizing performance with AI, we were able to achieve 92% accuracy and F1 and 0.96 AUROC in prospectively predicting the onset of TD in early adolescence. Structural differences in the left putamen, sleep disturbances and the level of parental externalizing behaviors were specific predictors of new onset TD at 11-12 yrs, interacting with low youth prosociality, the total parental behavioral problems and parent-child conflict and whether the youth had already come to clinical attention. More important predictors showed greater inter-individual variability.ConclusionsThis study provides robust person-level, multivariable signatures of early adolescent TD which suggest that structural differences in the left putamen in late childhood are a candidate biomarker that interacts with psychosocial stressors to increase risk for TD onset. Our work also suggests that interventions to promote improved sleep and lessen parent-child psychosocial stressors are worthy of further exploration to modulate risk for TD onset.

Publisher

Cold Spring Harbor Laboratory

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3