Integrating population-level and cell-based signatures for drug repositioning

Author:

He Chunfeng,Xu Yue,Zhou Yuan,Fan Jiayao,Cheng Chunxiao,Meng Ran,Gamazon Eric R.,Zhou Dan

Abstract

AbstractDrug repositioning presents a streamlined and cost-efficient way to expand the range of therapeutic possibilities. Furthermore, drugs with genetic evidence are more likely to progress successfully through clinical trials towards FDA approval. Exploiting these developments, single gene-based drug repositioning methods have been implemented, but approaches leveraging the entire spectrum of molecular signatures are critically underexplored. Most multi-gene-based approaches rely on differential gene expression (DGE) analysis, which is prone to identify the molecular consequence of disease and renders causal inference challenging. We propose a framework TReD (Transcriptome-informed Reversal Distance) that integrates population-level disease signatures robust to reverse causality and cell-based drug-induced transcriptome response profiles. TReD embeds the disease signature and drug profile in a high-dimensional normed space, quantifying the reversal potential of candidate drugs in a disease-related cell screen assay. The robustness is ensured by evaluation in additional cell screens. For an application, we implement the framework to identify potential drugs against COVID-19. Taking transcriptome-wide association study (TWAS) results from four relevant tissues and three DGE results as disease features, we identify 37 drugs showing potential reversal roles in at least four of the seven disease signatures. Notably, over 70% (27/37) of the drugs have been linked to COVID-19 from other studies, and among them, eight drugs are supported by ongoing/completed clinical trials. For example, TReD identifies the well-studied JAK1/JAK2 inhibitor baricitinib, the first FDA-approved immunomodulatory treatment for COVID-19. Novel potential candidates, including enzastaurin, a selective inhibitor of PKC-beta which can be activated by SARS-CoV-2, are also identified. In summary, we propose a comprehensive genetics-anchored framework integrating population-level signatures and cell-based screens that can accelerate the search for new therapeutic strategies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3