Lipids with negative spontaneous curvature decrease the solubility of the cancer drug paclitaxel in liposomes

Author:

Steffes VictoriaORCID,MacDonald Scott,Crowe John,Murali Meena,Ewert Kai K.ORCID,Li Youli,Safinya Cyrus R.ORCID

Abstract

AbstractPaclitaxel (PTX) is a hydrophobic small-molecule cancer drug that loads into the membrane (tail) region of lipid carriers such as liposomes and micelles. The development of improved lipid-based carriers of PTX is an important objective to generate chemotherapeutics with fewer side effects. The lipids 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) and glyceryl monooleate (GMO) show propensity for fusion with other lipid membranes, which has led to their use in lipid vectors of nucleic acids. We hypothesized that DOPE and GMO could enhance PTX delivery to cells through a similar membrane fusion mechanism. As an important measure of drug carrier performance, we evaluated PTX solubility in cationic liposomes containing GMO or DOPE. Solubility was determined by time-dependent kinetic phase diagrams generated from direct observations of PTX crystal formation using differential-interference-contrast optical microscopy. Remarkably, PTX was much less soluble in these liposomes than in control cationic liposomes containing univalent cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC), which are not fusogenic. In particular, PTX was not substantially soluble in GMO-based cationic liposomes. The fusogenicity of DOPE and GMO is related to the negative spontaneous curvature of membranes containing these lipids, which drives formation of nonlamellar self-assembled phases (inverted hexagonal or gyroid cubic). We used synchrotron small-angle x-ray scattering to determine whether PTX solubility is governed by lipid membrane structure (condensed with DNA in pellet form) or by local intermolecular interactions. The results suggest that local intermolecular interactions are of greater importance and that the negative spontaneous curvature-inducing lipids DOPE and GMO are not suitable components of lipid carriers for PTX delivery regardless of carrier structure.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3