AdjuSST: An Adjustable Surface Stiffness Treadmill

Author:

Price Mark,Locurto Dominic,Abdikadirova Banu,Huber Meghan E.,Hoogkamer WouterORCID

Abstract

AbstractHumans have the remarkable ability to manage foot-ground interaction seamlessly across terrain changes despite the high dynamic complexity of the task. Understanding how adaptation in the neuromotor system enables this level of robustness in the face of changing interaction dynamics is critical for developing more effective gait retraining interventions. We developed an adjustable surface stiffness treadmill (AdjuSST) to trigger these adaptation mechanisms and enable studies to better understand human adaptation to changing foot-ground dynamics. The AdjuSST system makes use of fundamental beam-bending principles; it controls surface stiffness by controlling the effective length of a cantilever beam. The beam acts as a spring suspension for the transverse endpoint load applied through the treadmill. The system is capable of enforcing a stiffness range of 15-300kN/m within 340 ms, deflecting linearly downwards up to 10 cm, and comfortably accommodating two full steps of travel along the belt. AdjuSST offers significant enhancements in effective walking surface length compared to similar systems, while also maintaining a useful stiffness range and responsive spring suspension. These improvements enhance our ability to study locomotor control and adaptation to changes in surface stiffness, as well as provide new avenues for gait rehabilitation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3