Study Protocol for the Artificial Intelligence-Driven Evaluation of Structural Heart Diseases Using Wearable Electrocardiogram (ID-SHD)

Author:

Aminorroaya AryaORCID,Dhingra Lovedeep SinghORCID,Pedroso Camargos AlineORCID,Vasisht Shankar SumukhORCID,Khunte AkshayORCID,Sangha Veer,Sen Sounok,McNamara Robert L,Haynes Norrisa,Oikonomou Evangelos KORCID,Khera RohanORCID

Abstract

ABSTRACTIntroductionPortable devices capable of electrocardiogram (ECG) acquisition have the potential to enhance structural heart disease (SHD) management by enabling early detection through artificial intelligence-ECG (AI-ECG) algorithms. However, the performance of these AI algorithms for identifying SHD in a real-world screening setting is unknown. To address this gap, we aim to evaluate the validity of our wearable-adapted AI algorithm, which has been previously developed and validated for detecting SHD from single-lead portable ECGs in patients undergoing routine echocardiograms in the Yale New Haven Hospital (YNHH).Research Methods and AnalysisThis is the protocol for a cross-sectional study in the echocardiographic laboratories of YNHH. The study will enroll 585 patients referred for outpatient transthoracic echocardiogram (TTE) as part of their routine clinical care. Patients expressing interest in participating in the study will undergo a screening interview, followed by enrollment upon meeting eligibility criteria and providing informed consent. During their routine visit, patients will undergo a 1-lead ECG with two devices - one with an Apple Watch and the second with another portable 1-lead ECG device. With participant consent, these 1-lead ECG data will be linked to participant demographic and clinical data recorded in the YNHH electronic health records (EHR). The study will assess the performance of the AI-ECG algorithm in identifying SHD, including left ventricular systolic dysfunction (LVSD), valvular disease and severe left ventricular hypertrophy (LVH), by comparing the algorithm’s results with data obtained from TTE, which is the established gold standard for diagnosing SHD.Ethics and DisseminationAll patient EHR data required for assessing eligibility and conducting the AI-ECG will be accessed through secure servers approved for protected health information. Data will be maintained on secure, encrypted servers for a minimum of five years after the publication of our findings in a peer-reviewed journal, and any unanticipated adverse events or risks will be reported by the principal investigator to the Yale Institutional Review Board, which has reviewed and approved this protocol (Protocol Number: 2000035532).

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3