Inter-modality source coupling: a fully-automated whole-brain data-driven structure-function fingerprint shows replicable links to reading in a large-scale (N∼8K) analysis

Author:

Kotoski AlineORCID,Liu Jingyu,Morris Robin,Calhoun VinceORCID

Abstract

AbstractObjectiveBoth structural and functional brain changes have been individually associated with developing cognitive processes such as reading. However, there is limited research about the combined influence of resting-state functional and structural magnetic resonance imaging (rs-fMRI and sMRI) features in reading development, which could provide insights into the interplay between brain structure and function in shaping cognitive growth. We propose a method called inter-modality source coupling (IMSC) to study the coupling between the rs-fMRI and sMRI and its relationship to reading ability in school-age children.MethodsThis approach is applied to baseline data from four thousand participants (9-11 years) and replicated in a second group. Our analysis focused on the relationship of IMSC to overall reading score.ResultsOur findings indicate that higher reading ability was linked with increased function-structure coupling among higher-level cortical regions, particularly those links between the inferior parietal lobule and inferior frontal areas, and conversely, lower reading ability was associated with enhanced function-structure coupling among the fusiform and lingual gyrus. Our study found evidence of spatial correspondence between the data indicating an interplay between brain structure and function in our participants.ConclusionOur approach revealed a linked pattern of whole brain structure to the corresponding functional connectivity pattern that correlated with reading ability. This novel IMSC analysis method provides a new approach to study the multimodal relationship between brain function and structure.SignificanceThese findings have interesting implications for understanding the multimodal complexity underlying the development of the neural basis for reading ability in school-aged children.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3