Transforming spontaneous premature neonatal EEG to unpaired spontaneous fetal MEG using a CycleGan learning approach

Author:

Gallard AlbanORCID,Brebion Benoit,Sippel KatrinORCID,Zaylaa Amer,Preissl Hubert,Moghimi SaharORCID,Fregier Yael,Wallois Fabrice

Abstract

AbstractA large body of electroencephalography (EEG) studies has characterized the spontaneous neural activity of premature neonates at different gestational ages. However, evaluation of normal and pathological fetal brain development is still a challenge due to the complexity of the extraction and analysis of fetal neural activity. Fetal magnetoencephalography (fMEG) is currently the only available technique to record fetal neural activity with a time resolution equivalent to that of EEG. However, the signatures and characteristics of fetal spontaneous neural activity are still largely unknown. Benefiting from progress in machine learning and artificial intelligence, we aimed to transfer premature EEG to fMEG, to characterize the manifestation of spontaneous activity using the knowledge obtained from premature EEG.In this study, 30 high-resolution EEG recordings from premature newborns and 44 fMEG recordings, both from 34 to 37 weeks of gestation (wGA) were used to develop a transfer function to predict the spontaneous neural activity of the fetus. After preprocessing, bursts of spontaneous activity were detected using the non-linear energy operator over both EEG and fMEG signals. Next, we proposed a CycleGAN-based model to transform the premature EEG to fMEG and vice versa and evaluated its performance with both time and frequency measurements on both forward and inverse conversions.In the time domain, the values were similar for the mean square error (< 5%) and correlation (0.91 ± 0.05 and 0.89 ± 0.08) for the EEG to fMEG and fMEG to EEG transformations between the original data and that generated by CycleGAN. However, considering the frequency content, the CycleGAN-based model modulated the frequency content of EEG to MEG transformed signals relative to the original signals by increasing the power, on average, in all frequency bands, except for the slow delta frequency band. Our developed model showed promising potential to generate a priori signatures of fMEG manifestations related to spontaneous neural activity. Collectively, this study represents the first steps toward identifying neurobiomarkers of fetal brain development.

Publisher

Cold Spring Harbor Laboratory

Reference56 articles.

1. Back to basics: the neuronal substrates and mechanisms that underlie the electroencephalogram in premature neonates

2. Fetal MEG Redistribution by Projection Operators

3. Recording of temporal–spatial biomagnetic signals over the whole maternal abdomen with SARAauditory fetal brain responses;J Biomed Tech,2001

4. Preissl H , Eswaran H , Wilson JD , Robinson SE , Vrba M , Murphy P , Lowery CL . Redefining fetal evoked fields with biomagnetic recordings over the whole maternal abdomen. In: In: IEEE proceedings of 23rd annual international conference of the IEEE engineering medicine and biology, 2001b. p. 620–3. ISBN 0-7803-7213-1.

5. Imaging structural and functional brain development in early childhood

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3