Inflammasome-Inhibiting Nanoligomers are Neuroprotective Against Space-Induced Pathology in Healthy and Diseased 3D Human Motor and Pre-Frontal Cortex Brain Organoids

Author:

Sharma Sadhana,Gilberto Vincenzo S.,Rask Jon,Chatterjee Anushree,Nagpal Prashant

Abstract

ABSTRACTMicrogravity and space environment has been linked to deficits in neuromuscular and cognitive capabilities, hypothesized to occur due to accelerated aging and neurodegeneration in space. While the specific mechanisms are still being investigated, spaceflight-associated neuropathology is an important health risk to space astronauts and tourists, and is being actively investigated for the development of appropriate countermeasures. However, such space-induced neuropathology offers an opportunity for accelerated screening of therapeutic targets and lead molecules for treating neurodegenerative diseases. Here we show, a proof-of-concept high-throughput target screening (on Earth), target validation, and mitigation of microgravity-induced neuropathology using our Nanoligomer™ platform, onboard the 43-day SpaceX CRS-29 mission to the International Space Station (ISS). First, comparing 3D healthy and diseased pre-frontal cortex (PFC, for cognition) and motor neuron (MN, for neuromuscular function) organoids, we assessed space-induced pathology using biomarkers relevant to Alzheimer’s Disease (AD), Frontotemporal Dementia (FTD), and Amyotrophic Lateral Sclerosis (ALS). Both healthy and diseased PFC and MN organoids showed significantly enhanced neurodegeneration in space, as measured through relevant disease biomarkers, when compared to their respective Earth controls. Second, we tested the top two lead molecules, NI112 which targeted NF-κB, and NI113 that targeted IL-6. We observed that these Nanoligomers significantly mitigate the AD, FTD, and ALS relevant biomarkers like amyloid beta-42 (Aβ42), phosphorylated Tau (pTau), Kallikrein (KLK-6), Tar DNA-binding protein 43 (TDP-43), and others. Moreover, the 43-day Nanoligomer treatment of these brain organoids did not appear to cause any observable toxicity or safety issues in the target organoid tissue, suggesting good tolerability for these molecules in the brain at physiologically relevant doses. Together, these results show significant potential for both the development and translation of NI112 and NI113 molecules as potential neuroprotective countermeasures for safer space travel, and demonstrate the usefulness of the space environment for rapid, high-throughput screening of targets and lead molecules for clinical translation. We assert that the use of microgravity in drug development and screening may ultimately benefit millions of patients suffering from debilitating neurodegenerative diseases on Earth.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3