Estimating individual risk of catheter-associated urinary tract infections using explainable artificial intelligence on clinical data

Author:

Sufriyana HerdiantriORCID,Chen ChiehORCID,Chiu Hua-ShengORCID,Sumazin PavelORCID,Yang Po-YuORCID,Kang Jiunn-HorngORCID,Su Emily Chia-YuORCID

Abstract

AbstractBackgroundCatheter-associated urinary tract infections (CA-UTIs) significantly increase clinical burdens. Identifying patients at high-risk of CA-UTIs is crucial in clinical practice. In this study, we developed and externally validated an explainable, prognostic prediction model of CA-UTIs among hospitalized individuals receiving urinary catheterization.MethodsWe applied a retrospective cohort paradigm to select data from a clinical research database covering three hospitals in Taiwan. We developed a prediction model using data from two hospitals and used the third hospital’s data for external validation. We selected predictors by a multivariate regression analysis through applying a Cox proportional-hazards model. Both statistical and computational machine learning algorithms were applied for predictive modeling: (1) ridge regression; (2) decision tree; (3) random forest (RF); (4) extreme gradient boosting; and (5) deep-insight visible neural network. We evaluated the calibration, clinical utility, and discrimination ability to choose the best model by the validation set. The Shapley additive explanation was used to assess the explainability of the best model.ResultsWe included 122,417 instances from 20-to-75-year-old subjects with multiple visits (n=26,401) and multiple orders of urine catheterization per visit (n=35,230). Fourteen predictors were selected from 20 candidate variables. The best prediction model was the RF for predicting CA-UTIs within 6 days. It detected 97.63% (95% confidence interval [CI]: 97.57%, 97.69%) CA-UTI positive, and 97.36% (95% CI: 97.29%, 97.42%) of individuals that were predicted to be CA-UTI negative were true negatives. Among those predicted to be CA-UTI positives, we expected 22.85% (95% CI: 22.79%, 22.92%) of them to truly be high-risk individuals. We also provide a web-based application and a paper-based nomogram for using the best model.ConclusionsOur prediction model was clinically accurate by detecting most CA-UTI positive cases, while most predicted negative individuals were correctly ruled out. However, future studies are needed to prospectively evaluate the implementation, validity, and reliability of this prediction model among users of the web application and nomogram, and the model’s impacts on patient outcomes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3