Symmetry breaking and fate divergence during lateral inhibition inDrosophila

Author:

Phan Minh-SonORCID,Kim Jang-mi,Picciotto Cara,Couturier Lydie,Veits Nisha,Mazouni Khallil,Schweisguth FrançoisORCID

Abstract

AbstractLateral inhibition by Notch mediates the adoption of alternative cell fates amongst groups of initially equipotent cells, leading to the formation of regular patterns of cell fates in many tissues across species. Genetic and molecular studies have established a model whereby an intercellular negative feedback loop serves to amplify small stochastic differences in Notch activity, thereby generating ordered salt-and-pepper patterns. InDrosophila, lateral inhibition selects Sensory Organ Precursor cells (SOPs) from clusters of proneural cells that are competent to become neural through the expression of proneural transcription factors. When and how symmetry breaking occurs during lateral inhibition remains, however, to be addressed. Here, we have used the pupal abdomen as an experimental model to study the dynamics of lateral inhibition inDrosophila. Using quantitative live imaging, we monitored the accumulation of the transcription factor Scute (Sc), used as a surrogate for proneural competence and adoption of the SOP fate. We found that fate symmetry breaking occurred at low Sc levels and that fate divergence was not preceded by a prolonged phase of low or intermediate level of Sc accumulation. The relative size of the apical area did not appear to bias this fate choice. Unexpectedly, we observed at low frequency (10%) pairs of cells that are in direct contact at the time of SB and that adopt the SOP fate. These lateral inhibition defects were corrected via cellular rearrangements. Analysis of Sc dynamics in wild-type and genetically mosaic pupae further revealed that cell-to-cell variations in Sc levels promoted fate divergence, thereby providing experimental support for the intercellular negative feedback loop model.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3