Differences in Protein Capture by SP3 and SP4 Demonstrate Mechanistic Insights of Proteomics Clean-up Techniques

Author:

Conforti Jessica M.,Ziegler Amanda M.,Worth Charli S.,Nambiar Adhwaitha M.,Bailey Jacob T.,Taube Joseph H.ORCID,Gallagher Elyssia S.ORCID

Abstract

ABSTRACTThe goal of proteomics experiments is to identify proteins to observe changes in cellular processes and diseases. One challenge in proteomics is the removal of contaminants following protein extraction, which can limit protein identification. Single-pot, solid-phase-enhanced sample preparation (SP3) is a clean-up technique in which proteins are captured on carboxylate-modified particles through a proposed hydrophilic-interaction-liquid-chromatography (HILIC)-like mechanism. However, recent results have suggested that proteins are captured in SP3 due to a protein-aggregation mechanism. Thus, solvent precipitation, single-pot, solid-phase-enhanced sample preparation (SP4) is a newer clean-up technique that employs protein-aggregation to capture proteins without modified particles. SP4 has previously enriched low-solubility proteins, though differences in protein capture could affect which proteins are detected and identified. We hypothesize that the mechanisms of capture for SP3 and SP4 are distinct. Herein, we assess the proteins identified and enriched using SP3 versus SP4 for MCF7 subcellular fractions and correlate protein capture in each method to protein hydrophobicity. Our results indicate that SP3 captures more hydrophilic proteins through a combination of HILIC-like and protein-aggregation mechanisms, while SP4 captures more hydrophobic proteins through a protein-aggregation mechanism. From these results, we recommend clean-up techniques based on protein-sample hydrophobicity to yield high proteome coverage in biological samples.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3