Proneural genes form a combinatorial code to diversify neocortical neural progenitor cells

Author:

Moffat Alexandra,Oproescu Ana-Maria,Okawa Satoshi,Han Sisu,Vasan Lakshmy,Ghazale Hussein,Dennis Daniel J,Zinyk Dawn,Guillemot François,del Sol Antonio,Schuurmans Carol

Abstract

ABSTRACTNeocortical neural progenitor cells (NPCs) are molecularly heterogeneous, yet the genes that confer distinct neuronal morphologies and connectivities during development are poorly understood. Here, we determined that a proneural gene combinatorial code diversifies cortical NPCs. By mining scRNA-seq data from murine embryonic and early postnatal cortices and generating trajectory inference models, we found that Neurog2 is predominant, and is transiently co-expressed with Ascl1 and/or Neurog1 during an apical-to-basal NPC transition state in NPCs with early pseudotime identities. To assess whether proneural gene pairs confer distinct properties, we first used Neurog2/Ascl1 reporter mice expressing unique reporters, revealing that NPCs have distinct cell division modes and cell cycle dynamics dependent on their proneural gene profile. To assess Neurog2/Neurog1 interactions, we used double knock-out mice and novel split-Cre transgenics crossed to a Rosa-diptheria-toxin-A line to delete double+cells, showing Neurog1/Neurog2 are specifically required to generate early-born neurons and to maintain NPCs. Finally, in silico mutation of a cortical Neurog2-gene regulatory network and validation using Neurog1/Neurog2 mutant and ‘deleter’ mice, identified Bclllb and Nhlh2, expressed in early-born neurons, as dependent on Neurog1/Neurog2. Our data explains how proneural genes act combinatorically to diversify gene regulatory networks, thereby lineage restricting NPCs and creating cortical neuronal diversity.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3