The VanS sensor histidine kinase from type-B VRE recognizes vancomycin directly

Author:

Maciunas Lina J.ORCID,Rotsides PhotisORCID,Brady Samantha,Beld JorisORCID,Loll Patrick J.ORCID

Abstract

AbstractVancomycin-resistantenterococci (VRE) are among the most common causes of nosocomial infections, which can be challenging to treat. VRE have acquired a suite of resistance genes that function together to confer resistance to vancomycin. Expression of the resistance phenotype is controlled by the VanRS two-component system. This system senses the presence of the antibiotic, and responds by initiating transcription of resistance genes. VanS is a transmembrane sensor histidine kinase, and plays a fundamental role in antibiotic resistance by detecting vancomycin and then transducing this signal to VanR. Despite the critical role played by VanS, fundamental questions remain about its function, and in particular about how it senses vancomycin. Here, we focus on purified VanRS systems from the two most clinically prevalent forms of VRE, types A and B. We show that in a native-like membrane environment, the enzymatic activities of type-A VanS are insensitive to vancomycin, suggesting that the protein functions by an indirect mechanism that detects a downstream consequence of antibiotic activity. In contrast, the autokinase activity of type-B VanS is strongly stimulated by vancomycin. We additionally demonstrate that this effect is mediated by a direct physical interaction between the antibiotic and the type-B VanS protein, and localize the interacting region to the protein’s periplasmic domain. This represents the first time that a direct sensing mechanism has been confirmed for any VanS protein.Significance StatementWhenvancomycin-resistantenterococci (VRE) sense the presence of vancomycin, they remodel their cell walls to block antibiotic binding. This resistance phenotype is controlled by the VanS protein, a sensor histidine kinase that senses the antibiotic and signals for transcription of resistance genes. However, the mechanism by which VanS detects the antibiotic has remained unclear. Here, we show that VanS proteins from the two most common types of VRE use very different sensing mechanisms. Vancomycin does not alter the signaling activity of VanS from type-A VRE, suggesting an indirect sensing mechanism; in contrast, VanS from type-B VRE is activated by direct binding of the antibiotic. Such mechanistic insights will likely prove useful in circumventing vancomycin resistance.

Publisher

Cold Spring Harbor Laboratory

Reference64 articles.

1. Antibiotics: past, present and future

2. Vancomycin-Resistant Enterococci: Epidemiology, Infection Prevention, and Control;Infect Dis Clin North Am,2021

3. E. Tacconelli , N. Magrini (2017) Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics. (World Health Organization).

4. Vancomycin-resistant enterococcal infections: epidemiology, clinical manifestations, and optimal management

5. Federal Funding for the Study of Antimicrobial Resistance in Nosocomial Pathogens: No ESKAPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3