Higher general intelligence is linked to stable, efficient, and typical dynamic functional brain connectivity patterns

Author:

Ng Justin,Yu Ju-Chi,Feusner Jamie D.,Hawco Colin

Abstract

AbstractGeneral intelligence, referred to as g, is hypothesized to emerge from the capacity to dynamically and adaptively reorganize macroscale brain connectivity. Temporal reconfiguration can be assessed using dynamic functional connectivity (dFC), which captures the propensity of brain connectivity to transition between a recurring repertoire of distinct states. Conventional dFC metrics commonly focus on categorical state switching frequencies which do not fully assess individual variation in continuous connectivity reconfiguration. Here, we supplement frequency measures by quantifying within-state connectivity consistency, dissimilarity between connectivity across states, and conformity of individual connectivity to group-average state connectivity. We utilized resting-state fMRI data from the large-scale Human Connectome Project and applied data-driven multivariate Partial Least Squares Correlation to explore emergent associations between dynamic network properties and cognitive ability. Our findings reveal a positive association between g and the stable maintenance of states characterized by distinct connectivity between higher-order networks, efficient reconfiguration (i.e., minimal connectivity changes during transitions between similar states, large connectivity changes between dissimilar states), and ability to sustain connectivity close to group-average state connectivity. This hints at fundamental properties of brain-behavior organization, suggesting that general cognitive processing capacity is supported by the ability to efficiently reconfigure between stable and population-typical connectivity patterns.Impact StatementNovel evidence for an association between the stability, efficiency, and typicality of macro-scale dynamic functional connectivity patterns of the brain and higher general intelligence.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3